论文标题
从原行星磁盘中观察到的差距推断行星质量的机器学习模型
A Machine Learning model to infer planet masses from gaps observed in protoplanetary disks
论文作者
论文摘要
明亮的原球盘的观察经常显示其灰尘发射中的环形间隙。这些差距的一种解释是磁盘 - 星空的相互作用。如果是这样,将行星间隙的拟合模型与观察到的原星磁盘间隙与隐藏的行星的存在都可以揭示出存在。但是,预计未来的调查将产生数量不断增加的具有差距的原行星磁盘。在这种情况下,由于磁盘 - 行星相互作用的复杂性,为每个目标执行自定义拟合变得不切实际。为此,我们介绍了DPNNET(磁盘神经网络),这是一个有效的行星差距模型,通过利用机器学习的力量。我们在一系列行星质量,磁盘温度,磁盘粘度,磁盘表面密度曲线,粒子stokes数字和灰尘丰度中训练一个深层神经网络,具有大量尘土飞机流体动力学模拟。然后可以部署网络以提取行星质量以进行给定的差距形态。在这项工作中,首先是系列中,我们专注于机器学习框架的基本概念。我们通过将其应用于HL Tau周围的Protoplanetary磁盘中观察到的尘埃差距,以$ 10 $ au,$ 30 $ au和$ 80 $ au的速度来证明其实用性。我们的网络预测$ 80 \,m _ {\ rm Earth} $,$ 63 \,M _ {\ rm Earth} $的行星质量分别与基于专用模拟的其他研究相当。我们讨论了DPNNET的关键优势,以融合新的物理学,任何数量的参数和预测以及最终替代磁盘观察者和建模者的流体动力学模拟的潜力。
Observations of bright protoplanetary disks often show annular gaps in their dust emission. One interpretation of these gaps is disk-planet interaction. If so, fitting models of planetary gaps to observed protoplanetary disk gaps can reveal the presence of hidden planets. However, future surveys are expected to produce an ever-increasing number of protoplanetary disks with gaps. In this case, performing a customized fitting for each target becomes impractical owing to the complexity of disk-planet interaction. To this end, we introduce DPNNet (Disk Planet Neural Network), an efficient model of planetary gaps by exploiting the power of machine learning. We train a deep neural network with a large number of dusty disk-planet hydrodynamic simulations across a range of planet masses, disk temperatures, disk viscosities, disk surface density profiles, particle Stokes numbers, and dust abundances. The network can then be deployed to extract the planet mass for a given gap morphology. In this work, first in a series, we focus on the basic concepts of our machine learning framework. We demonstrate its utility by applying it to the dust gaps observed in the protoplanetary disk around HL Tau at $10$ au, $30$ au, and $80$ au. Our network predict planet masses of $80 \, M_{\rm Earth}$, $63 \, M_{\rm Earth}$, and $70 \, M_{\rm Earth}$, respectively, which are comparable to other studies based on specialized simulations. We discuss the key advantages of our DPNNet in its flexibility to incorporate new physics, any number of parameters and predictions, and its potential to ultimately replace hydrodynamical simulations for disk observers and modelers.