论文标题

Flexpool:联合乘客和商品运输的无分布式深钢筋学习算法

FlexPool: A Distributed Model-Free Deep Reinforcement Learning Algorithm for Joint Passengers & Goods Transportation

论文作者

Manchella, Kaushik, Umrawal, Abhishek K., Aggarwal, Vaneet

论文摘要

在线商品交付的增长正在导致最后一英里交付的城市车辆流量急剧激增。另一方面,随着乘车共享平台的成功,乘车共享的发展一直在上升,并增加了使用自动驾驶汽车技术进行路由和匹配的研究。乘客和商品的城市流动性的未来依赖于利用新方法最小化运营成本和运输系统的环境足迹。 本文考虑将客运运输与货物交付相结合以改善基于车辆的运输。即使已经使用了运输系统环境的定义动力学模型来研究问题,但本文考虑了一种无模型的方法,该方法已被证明适合新的或不稳定的环境动力学。我们提出了FlexPool,这是一种无模型的深入强化学习算法,该算法通过从与环境的互动中学习最佳调度策略,共同为乘客和商品工作负载提供服务。拟议的算法池乘客提供乘车共享服务,并使用多跳型运输方法提供货物。这些灵活性降低了车队的运营成本和环境足迹,同时维持乘客和商品的服务水平。通过在现实的多代理城市移动平台上的模拟,我们证明了Flexpool在满足乘客和商品的需求方面优于其他无模型设置。与(i)无模型的方法相比,FlexPool可实现30%的车队利用率和提高35%的燃油效率,在该方法中,车辆在不使用多跳跃运输的情况下运输了乘客和货物的组合,以及(ii)无模型的车辆在其中独家运输乘客或货物的车辆。

The growth in online goods delivery is causing a dramatic surge in urban vehicle traffic from last-mile deliveries. On the other hand, ride-sharing has been on the rise with the success of ride-sharing platforms and increased research on using autonomous vehicle technologies for routing and matching. The future of urban mobility for passengers and goods relies on leveraging new methods that minimize operational costs and environmental footprints of transportation systems. This paper considers combining passenger transportation with goods delivery to improve vehicle-based transportation. Even though the problem has been studied with a defined dynamics model of the transportation system environment, this paper considers a model-free approach that has been demonstrated to be adaptable to new or erratic environment dynamics. We propose FlexPool, a distributed model-free deep reinforcement learning algorithm that jointly serves passengers & goods workloads by learning optimal dispatch policies from its interaction with the environment. The proposed algorithm pools passengers for a ride-sharing service and delivers goods using a multi-hop transit method. These flexibilities decrease the fleet's operational cost and environmental footprint while maintaining service levels for passengers and goods. Through simulations on a realistic multi-agent urban mobility platform, we demonstrate that FlexPool outperforms other model-free settings in serving the demands from passengers & goods. FlexPool achieves 30% higher fleet utilization and 35% higher fuel efficiency in comparison to (i) model-free approaches where vehicles transport a combination of passengers & goods without the use of multi-hop transit, and (ii) model-free approaches where vehicles exclusively transport either passengers or goods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源