论文标题

连续体中的跳跃和聚结:一项数值研究

Jumps and Coalescence in the Continuum: a Numerical Study

论文作者

Yuri, Kozitsky, Igor, Omelyan, Krzysztof, Pilorz

论文摘要

研究了无限连续体的跳跃和聚合点颗粒系统的动力学。在跳跃过程中,颗粒相互驱动,而它们的聚结是免费的。作为运动方程,我们采用动力学方程,该方程是由从微观fokker-planck方程进行的缩放过程得出的,与这种运动相对应。本文的结果是动力学方程解的数值研究(通过runge-kutta方法),揭示了动力学的许多有趣的特点,并阐明了跳跃的特定作用和系统在系统演变中的特定作用。还发现并分析了可能的非平稳状态。

The dynamics is studied of an infinite continuum system of jumping and coalescing point particles. In the course of jumps, the particles repel each other whereas their coalescence is free. As the equation of motion we take a kinetic equation, derived by a scaling procedure from the microscopic Fokker-Planck equation corresponding to this kind of motion. The result of the paper is the numerical study (by the Runge-Kutta method) of the solutions of the kinetic equation revealing a number of interesting peculiarities of the dynamics and clarifying the particular role of the jumps and the coalescence in the system's evolution. Possible nontrivial stationary states are also found and analyzed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源