论文标题

使用子空间技术在脑电图中与任务无关的人特异性签名的证据

Evidence of Task-Independent Person-Specific Signatures in EEG using Subspace Techniques

论文作者

Kumar, Mari Ganesh, Narayanan, Shrikanth, Sur, Mriganka, Murthy, Hema A

论文摘要

脑电图(EEG)信号是有望作为其他生物识别技术的替代方案,因为它们可以防止欺骗。先前的研究集中在通过分析特定于任务/条件的脑电图来捕获个人变异性。这项工作试图通过标准化相关方差来模拟独立于任务/条件的生物特征特征。为了实现这一目标,该论文将基于基于基于文本的扬声器的说话者识别的想法扩展了想法,并提出了用于建模多渠道脑电图数据的新修改。提出的技术假设生物识别信息存在于整个EEG信号中,并在高维空间中跨时间积累统计。然后将这些高维统计数据投影到保留生物识别信息的较低维空间。使用所提出的方法获得的较低维嵌入被证明是与任务无关的。最佳子空间系统可以使用仅使用9个EEG渠道,分别使用30和920受试者的数据集中的精度为86.4%和35.9%的个人。本文还提供了有关子空间模型在培训期间看不见的任务和个人的可扩展性以及子空间建模所需的渠道数量的见解。

Electroencephalography (EEG) signals are promising as alternatives to other biometrics owing to their protection against spoofing. Previous studies have focused on capturing individual variability by analyzing task/condition-specific EEG. This work attempts to model biometric signatures independent of task/condition by normalizing the associated variance. Toward this goal, the paper extends ideas from subspace-based text-independent speaker recognition and proposes novel modifications for modeling multi-channel EEG data. The proposed techniques assume that biometric information is present in the entire EEG signal and accumulate statistics across time in a high dimensional space. These high dimensional statistics are then projected to a lower dimensional space where the biometric information is preserved. The lower dimensional embeddings obtained using the proposed approach are shown to be task-independent. The best subspace system identifies individuals with accuracies of 86.4% and 35.9% on datasets with 30 and 920 subjects, respectively, using just nine EEG channels. The paper also provides insights into the subspace model's scalability to unseen tasks and individuals during training and the number of channels needed for subspace modeling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源