论文标题

在非典型随机环境中移民的分支过程

Branching processes with immigration in atypical random environment

论文作者

Foss, Sergey, Korshunov, Dmitry, Palmowski, Zbigniew

论文摘要

由Kesten等人的开创性论文动机。 (1975)我们考虑了具有I.I.D.几何后代分布的分支过程。随机环境参数$ a_n $,$ n \ ge 1 $和大小-1移民的移民。与上述纸张相反,我们假设环境是长尾尾,也就是说,$ξ_n的分布$ f $:= \ log(((1-a_n)/a_n)/a_n)$是长尾的。我们证明,尽管后代分布是轻尾的,但环境本身可以产生第n代人口规模的分布极为沉重的尾巴,随着n的增加而变得更重。更准确地说,我们证明,对于任何n,$ n $ th $ n $ th的人口尺寸$ z_n $的分销尾巴$ \ mathbb {p}(z_n> m)$在$ n \ overline {f}(\ log log m)上等同于$ m $ m $ m $ m $ grows。通过这种方式,我们概括了Bhattacharya和Palmowski(2019),他们在常规变化的环境$ f $的情况下证明了这一结果$ n = 1 $,参数$α> 1 $。此外,对于具有亚指数分布式$ξ_n$的亚临界分支过程,我们为分销尾巴提供渐近型$ \ mathbb {p}(z_n> m)$,对于所有$ n $,也适用于所有$ n $,也适用于常见的尾巴分配。然后,我们建立了“单个非典型环境的原理”,该原理说,颗粒数量较大的主要原因是单个非常小的环境参数$ a_k $的存在。

Motivated by a seminal paper of Kesten et al. (1975) we consider a branching process with a geometric offspring distribution with i.i.d. random environmental parameters $A_n$, $n\ge 1$ and size -1 immigration in each generation. In contrast to above mentioned paper we assume that the environment is long-tailed, that is that the distribution $F$ of $ξ_n := \log ((1-A_n)/A_n)$ is long-tailed. We prove that although the offspring distribution is light-tailed, the environment itself can produce extremely heavy tails of the distribution of the population size in the n-th generation which becomes even heavier with increase of n. More precisely, we prove that, for any n, the distribution tail $\mathbb{P}(Z_n > m)$ of the $n$-th population size $Z_n$ is asymptotically equivalent to $n\overline{F}(\log m)$ as $m$ grows. In this way we generalize Bhattacharya and Palmowski (2019) who proved this result in the case $n=1$ for regularly varying environment $F$ with parameter $α>1$. Further, for a subcritical branching process with subexponentially distributed $ξ_n$, we provide the asymptotics for the distribution tail $\mathbb{P}(Z_n>m)$ which are valid uniformly for all $n$, and also for the stationary tail distribution. Then we establish the "principle of a single atypical environment" which says that the main cause for the number of particles to be large is a presence of a single very small environmental parameter $A_k$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源