论文标题
扩展Snyder模型的关联实现
Associative realizations of the extended Snyder model
论文作者
论文摘要
通常与非交通性几何形状模型相关的恒星产品是非缔合性的,并且该属性可防止构建适当的HOPF代数。但是,可以通过将Lorentz Generator及其共轭动量包括在代数中引入定义明确的HOPF代数。在本文中,我们研究了这种扩展的Snyder时空的实现,并以Weyl级实现的形式获得了相关和扭曲,并在非共同性参数中进行了一阶。然后,我们将结果扩展到扩展的Snyder时空的最一般性实现,始终为一阶。
The star product usually associated to the Snyder model of noncommutative geometry is nonassociative, and this property prevents the construction of a proper Hopf algebra. It is however possible to introduce a well-defined Hopf algebra by including the Lorentz generators and their conjugate momenta into the algebra. In this paper, we study the realizations of this extended Snyder spacetime, and obtain the coproduct and twist and the associative star product in a Weyl-ordered realization, to first order in the noncommutativity parameter. We then extend our results to the most general realizations of the extended Snyder spacetime, always up to first order.