论文标题
图像驱动的判别和生成机器学习算法,用于建立微观结构处理关系
Image-driven discriminative and generative machine learning algorithms for establishing microstructure-processing relationships
论文作者
论文摘要
我们研究了微观结构表示的方法,目的是从微观结构图像数据中预测处理条件。研究了一种目前正在开发的二进制合金(铀混合物),目的是为了开发改进的机器学习方法,以形象识别,表征和建立将微结构与处理条件联系起来的预测能力。在这里,我们测试不同的微结构表示,并根据F1分数评估模型性能。通过区分与十个不同的热机械材料处理条件相对应的显微照片,获得了95.1%的F1评分。我们发现,我们新开发的微观结构表示很好地描述了图像数据,并且使用不同阶段的区域分数的传统方法不足以使用相对较小的,不平衡的272张图像的原始数据集来区分多个类。为了探索生成方法在补充这种有限的数据集的适用性,对生成对抗网络进行了训练以生成人工微结构图像。对两个不同的生成网络进行了训练和测试以评估性能。还讨论了与将机器学习应用于有限的微观结构图像数据集有关的挑战和最佳实践。我们的工作对定量微观结构分析有影响,并且在有限数据集中的微观结构处理关系的发展是冶金过程设计研究的典型特征。
We investigate methods of microstructure representation for the purpose of predicting processing condition from microstructure image data. A binary alloy (uranium-molybdenum) that is currently under development as a nuclear fuel was studied for the purpose of developing an improved machine learning approach to image recognition, characterization, and building predictive capabilities linking microstructure to processing conditions. Here, we test different microstructure representations and evaluate model performance based on the F1 score. A F1 score of 95.1% was achieved for distinguishing between micrographs corresponding to ten different thermo-mechanical material processing conditions. We find that our newly developed microstructure representation describes image data well, and the traditional approach of utilizing area fractions of different phases is insufficient for distinguishing between multiple classes using a relatively small, imbalanced original data set of 272 images. To explore the applicability of generative methods for supplementing such limited data sets, generative adversarial networks were trained to generate artificial microstructure images. Two different generative networks were trained and tested to assess performance. Challenges and best practices associated with applying machine learning to limited microstructure image data sets is also discussed. Our work has implications for quantitative microstructure analysis, and development of microstructure-processing relationships in limited data sets typical of metallurgical process design studies.