论文标题
基于深度学习的替代流动模型和3D地下流中数据同化的地质参数化
Deep-learning-based surrogate flow modeling and geological parameterization for data assimilation in 3D subsurface flow
论文作者
论文摘要
由于经常需要大量的流量模拟,并且需要在校准(后验)模型中保留地质现实主义,因此地下流量系统中的数据同化非常具有挑战性。在这项工作中,我们提出了一个基于深度学习的替代模型,用于在3D地下形成中进行两相流。该替代模型是一个3D复发的剩余U-NET(称为复发性R-U-NET),由3D卷积和经常性(Convlstm)神经网络组成,旨在捕获与动态地下流动体流动系统相关的空间时间信息。还描述了用于参数化复合物3D地质模型的CNN-PCA程序(主成分分析的卷积神经网络后处理)。这种方法代表了最近开发的基于监督的CNN-PCA框架的简化版本。对一组随机的“通道”地质模型(使用3D CNN-PCA生成),对复发性R-U-NET进行了模拟动态3D饱和和压力场的训练。详细的流动预测表明,复发性的R-U-NET替代模型为动态状态提供了准确的结果,并为新的地质实现提供了井的响应,以及对于新的地质模型集合的准确流量统计。然后将3D复发性R-U-NET和CNN-PCA程序组合使用,以进行涉及通道化系统的具有挑战性的数据同化问题。成功应用了两种不同的算法,即拒绝采样和基于集合的方法。本文描述的总体方法可以使数据同化程序的评估和完善一系列现实且具有挑战性的地下流问题。
Data assimilation in subsurface flow systems is challenging due to the large number of flow simulations often required, and by the need to preserve geological realism in the calibrated (posterior) models. In this work we present a deep-learning-based surrogate model for two-phase flow in 3D subsurface formations. This surrogate model, a 3D recurrent residual U-Net (referred to as recurrent R-U-Net), consists of 3D convolutional and recurrent (convLSTM) neural networks, designed to capture the spatial-temporal information associated with dynamic subsurface flow systems. A CNN-PCA procedure (convolutional neural network post-processing of principal component analysis) for parameterizing complex 3D geomodels is also described. This approach represents a simplified version of a recently developed supervised-learning-based CNN-PCA framework. The recurrent R-U-Net is trained on the simulated dynamic 3D saturation and pressure fields for a set of random `channelized' geomodels (generated using 3D CNN-PCA). Detailed flow predictions demonstrate that the recurrent R-U-Net surrogate model provides accurate results for dynamic states and well responses for new geological realizations, along with accurate flow statistics for an ensemble of new geomodels. The 3D recurrent R-U-Net and CNN-PCA procedures are then used in combination for a challenging data assimilation problem involving a channelized system. Two different algorithms, namely rejection sampling and an ensemble-based method, are successfully applied. The overall methodology described in this paper may enable the assessment and refinement of data assimilation procedures for a range of realistic and challenging subsurface flow problems.