论文标题

不确定性下的声学超材斗篷的最佳设计

Optimal design of acoustic metamaterial cloaks under uncertainty

论文作者

Chen, Peng, Haberman, Michael R., Ghattas, Omar

论文摘要

在这项工作中,我们考虑了在不确定性下声学斗篷最佳设计的问题,并开发可扩展的近似和优化方法来解决此问题。该设计变量被视为代表材料特性的无限二维领域,而添加剂的无限尺寸随机场表示材料属性或制造误差的可变性。这个最佳设计问题的离散化导致高维设计变量和不确定参数。为了解决这个问题,我们开发了一种基于泰勒近似值和牛顿优化方法的计算方法,该方法基于在随机场的平均值中得出的Hessian。我们表明,我们的方法相对于设计变量和不确定参数的维度是可扩展的,因为对于多达一百万个设计变量和半百万不确定参数的数值实验,必要的声波传播数量基本上与这些维度基本无关。我们证明,使用我们的计算方法,以易于处理的方式实现了对物质不确定性的最佳设计。在不确定性问题下的最佳设计是针对被环形的披肩区域所包围的经典圆形障碍物提出和解决的,该障碍物既受到单向单频率入射波和多向多频入射波的影响。最后,我们将该方法应用于确定性的大规模最佳披肩问题,以证明近似牛顿方法的Hessian计算对于大型复杂问题可行。

In this work, we consider the problem of optimal design of an acoustic cloak under uncertainty and develop scalable approximation and optimization methods to solve this problem. The design variable is taken as an infinite-dimensional spatially-varying field that represents the material property, while an additive infinite-dimensional random field represents the variability of the material property or the manufacturing error. Discretization of this optimal design problem results in high-dimensional design variables and uncertain parameters. To solve this problem, we develop a computational approach based on a Taylor approximation and an approximate Newton method for optimization, which is based on a Hessian derived at the mean of the random field. We show our approach is scalable with respect to the dimension of both the design variables and uncertain parameters, in the sense that the necessary number of acoustic wave propagations is essentially independent of these dimensions, for numerical experiments with up to one million design variables and half a million uncertain parameters. We demonstrate that, using our computational approach, an optimal design of the acoustic cloak that is robust to material uncertainty is achieved in a tractable manner. The optimal design under uncertainty problem is posed and solved for the classical circular obstacle surrounded by a ring-shaped cloaking region, subjected to both a single-direction single-frequency incident wave and multiple-direction multiple-frequency incident waves. Finally, we apply the method to a deterministic large-scale optimal cloaking problem with complex geometry, to demonstrate that the approximate Newton method's Hessian computation is viable for large, complex problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源