论文标题

用3D CNNS进行结核预测的3D CNN处理CT扫描的统一技术

Uniformizing Techniques to Process CT scans with 3D CNNs for Tuberculosis Prediction

论文作者

Zunair, Hasib, Rahman, Aimon, Mohammed, Nabeel, Cohen, Joseph Paul

论文摘要

对体积数据进行医学图像分析的常见方法使用深2D卷积神经网络(CNN)。这在很大程度上归因于3D数据的性质所面临的挑战:可变体积大小,优化过程中的GPU耗尽。但是,在2D CNN中独立处理单个切片,故意丢弃了深度信息,从而导致预期任务的性能不佳。因此,重要的是开发不仅要克服重记忆和计算要求的方法,而且还利用了3D信息。为此,我们评估了一组统一的方法来解决上述问题。第一种方法涉及从体积的一个子集均匀地采样信息。另一种方法通过在z轴上插值来利用3D体积的完整几何形状。我们证明了使用受控的消融研究的性能提高,并将这种方法对Imageclef结核病严重程度评估2019基准进行了测试。我们在曲线下(AUC)和二元分类精度(ACC)的73%面积为67.5%,击败了所有仅利用图像信息(不使用临床元数据)的方法,总体上达到了第5个位置。所有代码和模型均可在https://github.com/hasibzunair/uniformizing-3d上提供。

A common approach to medical image analysis on volumetric data uses deep 2D convolutional neural networks (CNNs). This is largely attributed to the challenges imposed by the nature of the 3D data: variable volume size, GPU exhaustion during optimization. However, dealing with the individual slices independently in 2D CNNs deliberately discards the depth information which results in poor performance for the intended task. Therefore, it is important to develop methods that not only overcome the heavy memory and computation requirements but also leverage the 3D information. To this end, we evaluate a set of volume uniformizing methods to address the aforementioned issues. The first method involves sampling information evenly from a subset of the volume. Another method exploits the full geometry of the 3D volume by interpolating over the z-axis. We demonstrate performance improvements using controlled ablation studies as well as put this approach to the test on the ImageCLEF Tuberculosis Severity Assessment 2019 benchmark. We report 73% area under curve (AUC) and binary classification accuracy (ACC) of 67.5% on the test set beating all methods which leveraged only image information (without using clinical meta-data) achieving 5-th position overall. All codes and models are made available at https://github.com/hasibzunair/uniformizing-3D.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源