论文标题

DeepHazard:随时间变化风险的神经网络

DeepHazard: neural network for time-varying risks

论文作者

Rava, Denise, Bradic, Jelena

论文摘要

生存分析中的预后模型旨在了解患者协变量与生存时间的分布之间的关系。传统上,已经假定了半参数模型,例如Cox模型。这些通常依赖于实践中可能违反的危害的强烈比例假设。此外,它们通常不包括随着时间的时间更新的协变量信息。我们提出了一种新的灵活方法来生存预测:DeepHazard,一种用于时变风险的神经网络。我们的方法是针对各种连续危害形式量身定制的,唯一的限制是及时增加。开发了一种灵活的实现,允许不同的优化方法以及任何规范惩罚。数值示例表明,我们的方法在通过C-索引度量评估的预测能力方面优于现有的最新方法。在流行的真实数据集上也揭示了同样的代表,GBSG和ACTG。

Prognostic models in survival analysis are aimed at understanding the relationship between patients' covariates and the distribution of survival time. Traditionally, semi-parametric models, such as the Cox model, have been assumed. These often rely on strong proportionality assumptions of the hazard that might be violated in practice. Moreover, they do not often include covariate information updated over time. We propose a new flexible method for survival prediction: DeepHazard, a neural network for time-varying risks. Our approach is tailored for a wide range of continuous hazards forms, with the only restriction of being additive in time. A flexible implementation, allowing different optimization methods, along with any norm penalty, is developed. Numerical examples illustrate that our approach outperforms existing state-of-the-art methodology in terms of predictive capability evaluated through the C-index metric. The same is revealed on the popular real datasets as METABRIC, GBSG, and ACTG.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源