论文标题

拓扑角模式的鲁棒性抵抗混乱和对声网络的应用

Robustness of topological corner modes against disorder and application to acoustic networks

论文作者

Coutant, Antonin, Achilleos, Vassos, Richoux, Olivier, Theocharis, Georgios, Pagneux, Vincent

论文摘要

我们在其高阶拓扑绝缘体阶段研究了Su-Schrieffer-Heeger模型的二维扩展,该阶段已知宿主角状态。利用模型的分离性为一维su-Schrieffer-Heeger链的产物,我们分析描述了特征模式,尤其是零能级,其中包括位于角落中的状态。然后,我们考虑具有无效跳跃系数的网络,以保留模型的手性(Sublattice)对称性。我们表明,如果跳跃系数在适当定义的超级斑块上有消失的通量,则转角模式及其本地化特性对障碍很强。然后,我们展示如何使用空气通道的声学网络来实现该模型,并确认角模式的存在和鲁棒性。

We study the two-dimensional extension of the Su-Schrieffer-Heeger model in its higher order topological insulator phase, which is known to host corner states. Using the separability of the model into a product of one-dimensional Su-Schrieffer-Heeger chains, we analytically describe the eigen-modes, and specifically the zero-energy level, which includes states localized in corners. We then consider networks with disordered hopping coefficients that preserve the chiral (sublattice) symmetry of the model. We show that the corner mode and its localization properties are robust against disorder if the hopping coefficients have a vanishing flux on appropriately defined super plaquettes. We then show how this model with disorder can be realised using an acoustic network of air channels, and confirm the presence and robustness of corner modes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源