论文标题

重复拍卖中的出价预测

Bid Prediction in Repeated Auctions with Learning

论文作者

Noti, Gali, Syrgkanis, Vasilis

论文摘要

我们考虑重复拍卖中出价预测的问题,并使用主流赞助的搜索拍卖市场的数据集评估计量经济学方法的性能。赞助的搜索拍卖是一个十亿美元的行业,也是几家科技巨头的主要收入来源。优化此类市场的一个关键问题是了解投标人将如何对拍卖设计的变化做出反应。我们建议使用基于无重组的计量经济学来进行投标预测,将参与者建模为分析师未知的公用事业功能的无重格学习者。我们提出了新的计量经济学方法,以同时了解玩家实用程序的参数和她的学习规则,并将这些方法应用于宾果阿德斯赞助的搜索拍卖市场的真实数据集中。我们表明,当没有共同变化时,无需重新计算的计量经济学方法与最新的时间序列机器学习方法可比性,但是当训练和测试期之间存在共同变化时,却显着超过了机器学习方法。这描绘了使用结构计量经济学方法来预测玩家将如何应对市场变化的重要性。此外,我们表明,在结构计量经济学方法中,基于无regret学习的方法优于传统,基于平衡的计量经济学方法,这些方法假设参与者不断对竞争的最佳回应。最后,我们证明了如何通过考虑优化具有可见性偏差分量的效用函数的投标者,可以进一步改善无重格学习算法的预测性能。

We consider the problem of bid prediction in repeated auctions and evaluate the performance of econometric methods for learning agents using a dataset from a mainstream sponsored search auction marketplace. Sponsored search auctions is a billion dollar industry and the main source of revenue of several tech giants. A critical problem in optimizing such marketplaces is understanding how bidders will react to changes in the auction design. We propose the use of no-regret based econometrics for bid prediction, modeling players as no-regret learners with respect to a utility function, unknown to the analyst. We propose new econometric approaches to simultaneously learn the parameters of a player's utility and her learning rule, and apply these methods in a real-world dataset from the BingAds sponsored search auction marketplace. We show that the no-regret econometric methods perform comparable to state-of-the-art time-series machine learning methods when there is no co-variate shift, but significantly outperform machine learning methods when there is a co-variate shift between the training and test periods. This portrays the importance of using structural econometric approaches in predicting how players will respond to changes in the market. Moreover, we show that among structural econometric methods, approaches based on no-regret learning outperform more traditional, equilibrium-based, econometric methods that assume that players continuously best-respond to competition. Finally, we demonstrate how the prediction performance of the no-regret learning algorithms can be further improved by considering bidders who optimize a utility function with a visibility bias component.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源