论文标题
一种自我训练的方法,用于观察点的对象检测和人群计数
A Self-Training Approach for Point-Supervised Object Detection and Counting in Crowds
论文作者
论文摘要
在本文中,我们提出了一种名为Crowd-SDNET的新型自我训练方法,该方法可以使典型的对象探测器仅接受点级注释(即,对象都标有点数),以估算拥挤对象的中心点和大小。具体来说,在培训期间,我们使用可用点注释直接监督对象中心点的估计。基于局部均匀的分布假设,我们从点级的监督信息初始化伪对象大小,然后利用它们通过拥挤的感知损失来指导对象大小的回归。同时,我们提出了一个信心和订单感知的精炼方案,以连续完善初始伪对象大小,以便越来越多地提高检测器的能力来同时检测和计数人群中的对象。此外,为了解决极度拥挤的场景,我们提出了一种有效的解码方法来提高检测器的表示能力。宽面基准上的实验结果表明,我们的方法在检测和计数任务下的最先进的监督方法胜过最先进的方法,即,我们的方法将平均精度提高了10%以上,并将计数误差降低了31.2%。此外,我们的方法还获得了人群计数和本地化数据集(即上海和nwpu-crowd)和车辆计数数据集(即cartk和PUCPR+)的最佳结果。该代码将在https://github.com/wangyintu/point-supervised-crowd-detection上公开获取。
In this paper, we propose a novel self-training approach named Crowd-SDNet that enables a typical object detector trained only with point-level annotations (i.e., objects are labeled with points) to estimate both the center points and sizes of crowded objects. Specifically, during training, we utilize the available point annotations to supervise the estimation of the center points of objects directly. Based on a locally-uniform distribution assumption, we initialize pseudo object sizes from the point-level supervisory information, which are then leveraged to guide the regression of object sizes via a crowdedness-aware loss. Meanwhile, we propose a confidence and order-aware refinement scheme to continuously refine the initial pseudo object sizes such that the ability of the detector is increasingly boosted to detect and count objects in crowds simultaneously. Moreover, to address extremely crowded scenes, we propose an effective decoding method to improve the detector's representation ability. Experimental results on the WiderFace benchmark show that our approach significantly outperforms state-of-the-art point-supervised methods under both detection and counting tasks, i.e., our method improves the average precision by more than 10% and reduces the counting error by 31.2%. Besides, our method obtains the best results on the crowd counting and localization datasets (i.e., ShanghaiTech and NWPU-Crowd) and vehicle counting datasets (i.e., CARPK and PUCPR+) compared with state-of-the-art counting-by-detection methods. The code will be publicly available at https://github.com/WangyiNTU/Point-supervised-crowd-detection.