论文标题

广义U统计和加权随机图的正常近似

Normal approximation for generalized U-statistics and weighted random graphs

论文作者

Privault, Nicolas, Serafin, Grzegorz

论文摘要

我们在Wasserstein距离中得出了正常的近似界限,以获得加权U统计量的总和,这是基于对任意分布的独立随机变量功能的一般距离结合。这些边界应用于ERDőS-Rényi随机图中子图的组合权重的正常近似,将[1]的图计数结果扩展到图形加权的设置。我们的方法依赖于独立随机序列功能的一般随机分析框架。

We derive normal approximation bounds in the Wasserstein distance for sums of weighted U-statistics, based on a general distance bound for functionals of independent random variables of arbitrary distributions. Those bounds are applied to normal approximation for the combined weights of subgraphs in the Erdős-Rényi random graph, extending the graph counting results of [1] to the setting of graph weighting. Our approach relies on a general stochastic analytic framework for functionals of independent random sequences.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源