论文标题
对流的湍流粘度作用在平衡潮流上:有效粘度的新频率缩放
Convective turbulent viscosity acting on equilibrium tidal flows: new frequency scaling of the effective viscosity
论文作者
论文摘要
动荡的对流被认为是一种有效的粘度($ν_e$),可以在恒星和巨型行星中阻尼潮流。但是,这种机制的效率长期以来一直在辩论,特别是在快速潮汐的制度中,当潮汐频率($ω$)超过主流对流涡流($ω_c$)的周转频率时。我们介绍了流体动力学模拟的结果,以研究潮流和对流区域中对流之间的相互作用。这些模拟通过模拟更大的水平框中的更动荡的对流来建立我们的先前工作,在这里我们探索了更广泛的参数。我们获得了几个新结果:1)$ν_e$是频率依赖性的,当$ω/ω_c\ lyseSim 1 $ 1 $时,将其缩放为$ω^{ - 0.5} $,并且似乎仅在很小的频率($ω/ω__c\ lisesim 10^{-2} $)上实现其最大恒定值。以前从未观察到低频潮汐强迫的这种频率减少。 2)$ν_e$的频率依赖性似乎遵循与低和中间频率的能量(或雷诺应力)的频谱相同的比例。 3)对于高频($ω/ω_c\ gtrsim 1-5 $),$ν_e\ proptoω^{ - 2} $。 4)充满活力的对流模式似乎总是对$ν_e$贡献最大,而不是在Kolmogorov级联中的共鸣。这些结果对恒星和行星的对流区域中的潮汐耗散具有重要意义,并表明应重新审视恒星和巨型行星中平衡潮汐的经典潮汐理论。我们简要介绍了围绕不断发展的恒星的行星轨道衰变的影响。
Turbulent convection is thought to act as an effective viscosity ($ν_E$) in damping tidal flows in stars and giant planets. However, the efficiency of this mechanism has long been debated, particularly in the regime of fast tides, when the tidal frequency ($ω$) exceeds the turnover frequency of the dominant convective eddies ($ω_c$). We present the results of hydrodynamical simulations to study the interaction between tidal flows and convection in a small patch of a convection zone. These simulations build upon our prior work by simulating more turbulent convection in larger horizontal boxes, and here we explore a wider range of parameters. We obtain several new results: 1) $ν_E$ is frequency-dependent, scaling as $ω^{-0.5}$ when $ω/ω_c \lesssim 1$, and appears to attain its maximum constant value only for very small frequencies ($ω/ω_c \lesssim 10^{-2}$). This frequency-reduction for low frequency tidal forcing has never been observed previously. 2) The frequency-dependence of $ν_E$ appears to follow the same scaling as the frequency spectrum of the energy (or Reynolds stress) for low and intermediate frequencies. 3) For high frequencies ($ω/ω_c\gtrsim 1-5$), $ν_E\propto ω^{-2}$. 4) The energetically-dominant convective modes always appear to contribute the most to $ν_E$, rather than the resonant eddies in a Kolmogorov cascade. These results have important implications for tidal dissipation in convection zones of stars and planets, and indicate that the classical tidal theory of the equilibrium tide in stars and giant planets should be revisited. We briefly touch upon the implications for planetary orbital decay around evolving stars.