论文标题

使用随机相变纳米振荡器的Ising Hamiltonian求解器

An Ising Hamiltonian Solver using Stochastic Phase-Transition Nano- Oscillators

论文作者

Dutta, Sourav, Khanna, Abhishek, Assoa, Adou S., Paik, Hanjong, Schlom, Darrell, Toroczkai, Zoltan, Raychowdhury, Arijit, Datta, Suman

论文摘要

计算上的硬性问题,包括组合优化,可以映射到寻找伊辛·哈密顿人的地面的问题中。具有集体计算能力和分布式并行处理能力的物理系统可以加速地面搜索。在这里,我们提出了一种连续的时间动力学系统(CTD)方法,在该方法中,基态解决方案作为CTD的稳定点或吸引子状态。我们利用相变纳米振荡器(PTNO)网络的新兴动态来构建伊辛·哈密顿求解器。硬件织物包括电耦合注入锁定的随机PTNO,并带有双稳定相模拟人工iSing旋转。我们证明了随机PTNO-CTD通过增加注入锁定信号的强度逐渐找到最佳解决方案的能力 - 类似于进行经典退火。我们在计算机中证明了PTNO-CTDS原型解决基准非确定性多项式时间(NP) - 最大切割问题,并具有很高的成功可能性。使用实验校准的数值模拟并结合了非理想性,我们研究了伊辛·哈密顿求解器对图表大小增加的密集最大切割问题的性能。我们报告了1.3x10^7解决方案/sec/watt的高能效率,用于100节点密集的最大切割问题,这与最近证明的基于Memristor的Hopfield网络的5倍改善,并且比其他候选者(例如CPU和GPU),量子杀伤力机和Photonic Ising solver方法对其他候选者进行了几个数量级改善。这样的能节能的硬件表现出高溶液通知/瓦特可以在工业规划和制造,国防和网络安全,生物信息学和药物发现中找到应用。

Computationally hard problems, including combinatorial optimization, can be mapped into the problem of finding the ground-state of an Ising Hamiltonian. Building physical systems with collective computational ability and distributed parallel processing capability can accelerate the ground-state search. Here, we present a continuous-time dynamical system (CTDS) approach where the ground-state solution appears as stable points or attractor states of the CTDS. We harness the emergent dynamics of a network of phase-transition nano-oscillators (PTNO) to build an Ising Hamiltonian solver. The hardware fabric comprises of electrically coupled injection-locked stochastic PTNOs with bi-stable phases emulating artificial Ising spins. We demonstrate the ability of the stochastic PTNO-CTDS to progressively find more optimal solution by increasing the strength of the injection-locking signal - akin to performing classical annealing. We demonstrate in silico that the PTNO-CTDS prototype solves a benchmark non-deterministic polynomial time (NP)-hard Max-Cut problem with high probability of success. Using experimentally calibrated numerical simulations and incorporating non-idealities, we investigate the performance of our Ising Hamiltonian solver on dense Max-Cut problems with increasing graph size. We report a high energy-efficiency of 1.3x10^7 solutions/sec/Watt for 100-node dense Max-cut problems which translates to a 5x improvement over the recently demonstrated memristor-based Hopfield network and several orders of magnitude improvement over other candidates such as CPU and GPU, quantum annealer and photonic Ising solver approaches. Such an energy efficient hardware exhibiting high solution-throughput/Watt can find applications in industrial planning and manufacturing, defense and cyber-security, bioinformatics and drug discovery.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源