论文标题
管道:用于感知图像修复的大型图像质量评估数据集
PIPAL: a Large-Scale Image Quality Assessment Dataset for Perceptual Image Restoration
论文作者
论文摘要
图像质量评估(IQA)是快速开发图像恢复(IR)算法的关键因素。基于生成对抗网络(GAN)的最新IR方法在视觉性能方面取得了显着改善,但也为定量评估带来了巨大的挑战。值得注意的是,我们观察到感知质量与评估结果之间的不一致性越来越大。然后我们提出了两个问题:(1)现有的IQA方法可以客观地评估最近的IR算法吗? (2)专注于击败当前基准测试时,我们是否会获得更好的红外算法?为了回答这些问题并促进IQA方法的开发,我们贡献了一个大规模的IQA数据集,称为感知图像处理算法(PIPAL)数据集。特别是,该数据集包括基于GAN的方法的结果,这些方法在以前的数据集中缺少。我们收集超过113万人类的判断,使用更可靠的“ ELO系统”为PIP图像分配主观分数。基于管道,我们为IQA和超分辨率方法提供了新的基准。我们的结果表明,现有的IQA方法无法公平地评估基于GAN的IR算法。虽然使用适当的评估方法很重要,但IQA方法也应与IR算法的开发一起更新。最后,我们通过引入抗辨布池来提高IQA网络对基于GAN的扭曲的性能。实验显示了所提出的方法的有效性。
Image quality assessment (IQA) is the key factor for the fast development of image restoration (IR) algorithms. The most recent IR methods based on Generative Adversarial Networks (GANs) have achieved significant improvement in visual performance, but also presented great challenges for quantitative evaluation. Notably, we observe an increasing inconsistency between perceptual quality and the evaluation results. Then we raise two questions: (1) Can existing IQA methods objectively evaluate recent IR algorithms? (2) When focus on beating current benchmarks, are we getting better IR algorithms? To answer these questions and promote the development of IQA methods, we contribute a large-scale IQA dataset, called Perceptual Image Processing Algorithms (PIPAL) dataset. Especially, this dataset includes the results of GAN-based methods, which are missing in previous datasets. We collect more than 1.13 million human judgments to assign subjective scores for PIPAL images using the more reliable "Elo system". Based on PIPAL, we present new benchmarks for both IQA and super-resolution methods. Our results indicate that existing IQA methods cannot fairly evaluate GAN-based IR algorithms. While using appropriate evaluation methods is important, IQA methods should also be updated along with the development of IR algorithms. At last, we improve the performance of IQA networks on GAN-based distortions by introducing anti-aliasing pooling. Experiments show the effectiveness of the proposed method.