论文标题

使用蒙特卡洛方法生成享乐游戏的经验核心大小分布

Generating Empirical Core Size Distributions of Hedonic Games using a Monte Carlo Method

论文作者

Collins, Andrew J., Etemadidavan, Sheida, Khallouli, Wael

论文摘要

数据分析允许分析师通过使用包括蒙特卡洛方法在内的各种计算方法来洞悉基本人群。本文讨论了一种将蒙特卡洛方法应用于享乐游戏的方法。享乐游戏在过去的二十年中广受欢迎,导致几篇研究文章涉及核心分区的必要,充分或两个条件。研究人员已使用分析方法进行这项工作。我们建议,使用数值方法将提供可能通过当前的分析方法获得的见解。在本文中,我们描述了一种以矩阵形式,可以轻松生成的代表享乐游戏的方法;也就是说,每个玩家都有随机生成首选项的享乐游戏。使用这种生成方法,我们能够创建和解决数百万享乐游戏的任何核心分区。我们的蒙特卡洛实验生成了多达13名玩家的游戏。结果讨论了给定数量玩家的游戏核心大小的分布形式。我们还讨论计算考虑因素。我们对享乐游戏的数字研究使您深入了解了享乐游戏的基本特性。

Data analytics allows an analyst to gain insight into underlying populations through the use of various computational approaches, including Monte Carlo methods. This paper discusses an approach to apply Monte Carlo methods to hedonic games. Hedonic games have gain popularity over the last two decades leading to several research articles that are concerned with the necessary, sufficient, or both conditions of the existence of a core partition. Researchers have used analytical methods for this work. We propose that using a numerical approach will give insights that might not be available through current analytical methods. In this paper, we describe an approach to representing hedonic games, with strict preferences, in a matrix form that can easily be generated; that is, a hedonic game with randomly generated preferences for each player. Using this generative approach, we were able to create and solve, i.e., find any core partitions, of millions of hedonic games. Our Monte Carlo experiment generated games with up to thirteen players. The results discuss the distribution form of the core size of the games of a given number of players. We also discuss computational considerations. Our numerical study of hedonic games gives insight into the underlying properties of hedonic games.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源