论文标题
具有消失的复杂性因子的自我磨削系统的准同源进化
Quasi-homologous evolution of self-gravitating systems with vanishing complexity factor
论文作者
论文摘要
我们研究了满足最小复杂性条件的自我散发性或非疾病系统的自我散发系统的演变,其面部半径速度与面积半径成正比(准同源条件)。在上述条件下发现了几种确切的分析模型。一些提出的模型描述了球形耗散流体分布的演变,其中心被腔所包围。他们中的一些人满足了达摩的条件,而另一些人则呈现壳,并且必须满足一个或两个边界表面上的以色列条件。讨论了其中一些模型在天体物理场景中的潜在应用。
We investigate the evolution of self-gravitating either dissipative or non--dissipative systems satisfying the condition of minimal complexity, and whose areal radius velocity is proportional to the areal radius (quasi-homologous condition). Several exact analytical models are found under the above mentioned conditions. Some of the presented models describe the evolution of spherically symmetric dissipative fluid distributions whose center is surrounded by a cavity. Some of them satisfy the Darmois conditions whereas others present shells and must satisfy the Israel condition on either one or both boundary surfaces. Prospective applications of some of these models to astrophysical scenarios are discussed.