论文标题

CVR-NET:胸部射线照相图像冠状病毒识别的深度卷积神经网络

CVR-Net: A deep convolutional neural network for coronavirus recognition from chest radiography images

论文作者

Hasan, Md. Kamrul, Alam, Md. Ashraful, Elahi, Md. Toufick E, Roy, Shidhartho, Wahid, Sifat Redwan

论文摘要

2019年新型冠状病毒病(COVID-19)是一种全球大流行病,在世界各地迅速传播。通过辅助计算机辅助诊断工具对COVID-19的强大而自动的早期认识对于疾病治愈和控制至关重要。胸部X射线照相图像,例如计算机断层扫描(CT)和X射线以及深卷积神经网络(CNN),可以是设计此类工具的重要材料。但是,设计这样的自动化工具是具有挑战性的,因为尚未公开使用大量的手动注释数据集,这是监督学习系统的核心要求。在本文中,我们提出了一个基于CNN的强大网络,称为CVR-NET(冠状病毒识别网络),以自动识别CT或X射线图像的冠状病毒。所提出的端到端CVR-NET是一个多规模的Multi编码集合模型,在该模型中,我们从两个不同的编码器及其不同的尺度汇总了输出,以获得最终的预测概率。我们在三个不同的数据集上训练并测试提出的CVR-NET,其中图像从不同的开源存储库中收集了。我们将建议的CVR-NET与最新方法进行比较,这些方法在同一数据集上进行了训练和测试。我们将三个数据集分为五个不同的任务,其中每个任务都有不同数量的类,以评估多任务CVR-NET。我们的模型达到了0.997和0.998的总体F1得分和准确性; 0.963和0.964; 0.816和0.820; 0.961和0.961;任务1至任务5分别为0.780和0.780。由于CVR-NET在小型数据集上提供了有希望的结果,因此它可以是吉祥的计算机辅助诊断工具,用于诊断冠状病毒,以帮助临床实践者和放射线医生。我们的源代码和模型可在https://github.com/kamruleee51/cvr-net上公开获得。

The novel Coronavirus Disease 2019 (COVID-19) is a global pandemic disease spreading rapidly around the world. A robust and automatic early recognition of COVID-19, via auxiliary computer-aided diagnostic tools, is essential for disease cure and control. The chest radiography images, such as Computed Tomography (CT) and X-ray, and deep Convolutional Neural Networks (CNNs), can be a significant and useful material for designing such tools. However, designing such an automated tool is challenging as a massive number of manually annotated datasets are not publicly available yet, which is the core requirement of supervised learning systems. In this article, we propose a robust CNN-based network, called CVR-Net (Coronavirus Recognition Network), for the automatic recognition of the coronavirus from CT or X-ray images. The proposed end-to-end CVR-Net is a multi-scale-multi-encoder ensemble model, where we have aggregated the outputs from two different encoders and their different scales to obtain the final prediction probability. We train and test the proposed CVR-Net on three different datasets, where the images have collected from different open-source repositories. We compare our proposed CVR-Net with state-of-the-art methods, which are trained and tested on the same datasets. We split three datasets into five different tasks, where each task has a different number of classes, to evaluate the multi-tasking CVR-Net. Our model achieves an overall F1-score & accuracy of 0.997 & 0.998; 0.963 & 0.964; 0.816 & 0.820; 0.961 & 0.961; and 0.780 & 0.780, respectively, for task-1 to task-5. As the CVR-Net provides promising results on the small datasets, it can be an auspicious computer-aided diagnostic tool for the diagnosis of coronavirus to assist the clinical practitioners and radiologists. Our source codes and model are publicly available at https://github.com/kamruleee51/CVR-Net.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源