论文标题
Deepkriging:空间预测的空间依赖性深神网络
DeepKriging: Spatially Dependent Deep Neural Networks for Spatial Prediction
论文作者
论文摘要
在空间统计中,一个共同的目标是通过利用空间依赖性来预测未观察到的位置的空间过程值。 Kriging使用协方差函数提供了最佳的线性无偏预测指标,并且通常与高斯过程有关。但是,当考虑非高斯和分类数据的非线性预测时,Kriging预测不再是最佳的,并且相关的方差通常过于乐观。尽管深层神经网络(DNN)被广泛用于通用分类和预测,但尚未对它们进行空间依赖性的数据进行彻底研究。在这项工作中,我们为空间预测提出了一种新型的DNN结构,其中空间依赖性是通过添加具有基础函数的空间坐标层的嵌入层来捕获的。我们在理论和模拟研究中表明,所提出的深层锻炼方法与克里格在高斯案例中具有直接联系,并且它比非高斯和非平稳数据具有多个优势,即非线性预测,即提供了较小的近似值,因此提供了较大的近似值,并且不需要多个近似值,并提供了较大的数据,并提供了量子,并提供了量子,并提供了量子级别的级别,并提供了量表,并提供了sculiancience矩阵,并提供了较大的近似值。在模型容量方面的最佳预测。我们进一步探讨了基于密度预测量化预测不确定性的可能性,而无需假设任何数据分布。最后,我们将方法应用于整个美国大陆的PM2.5浓度。
In spatial statistics, a common objective is to predict values of a spatial process at unobserved locations by exploiting spatial dependence. Kriging provides the best linear unbiased predictor using covariance functions and is often associated with Gaussian processes. However, when considering non-linear prediction for non-Gaussian and categorical data, the Kriging prediction is no longer optimal, and the associated variance is often overly optimistic. Although deep neural networks (DNNs) are widely used for general classification and prediction, they have not been studied thoroughly for data with spatial dependence. In this work, we propose a novel DNN structure for spatial prediction, where the spatial dependence is captured by adding an embedding layer of spatial coordinates with basis functions. We show in theory and simulation studies that the proposed DeepKriging method has a direct link to Kriging in the Gaussian case, and it has multiple advantages over Kriging for non-Gaussian and non-stationary data, i.e., it provides non-linear predictions and thus has smaller approximation errors, it does not require operations on covariance matrices and thus is scalable for large datasets, and with sufficiently many hidden neurons, it provides the optimal prediction in terms of model capacity. We further explore the possibility of quantifying prediction uncertainties based on density prediction without assuming any data distribution. Finally, we apply the method to predicting PM2.5 concentrations across the continental United States.