论文标题
对不对称量子狂犬模型的广义绝热近似:圆锥形交集和几何阶段
Generalized adiabatic approximation to the asymmetric quantum Rabi model: conical intersections and geometric phases
论文作者
论文摘要
描述量子谐波振荡器和偏置量子位之间的相互作用的不对称量子兔模型(AQRM)自然而然地在电路量子电动力电路和设备中出现。 AQRM中隐藏对称性的存在导致锥形交叉口(CIS)的丰富能量景观,从而具有有趣的拓扑特性。但是,当前对AQRM的近似值无法正确复制这些CI。为了克服这些局限性,我们提出了广义绝热近似(GAA)来描述AQRM的能量谱。这是通过组合扰动绝热近似和AQRM的确切特殊解决方案来实现的。 GAA可以对现有方法进行实质性改进,并将扰动治疗的极限推向非扰动制度。作为GAA应用的初步示例,我们计算与AQRM相关的CI的几何阶段。
The asymmetric quantum Rabi model (AQRM), which describes the interaction between a quantum harmonic oscillator and a biased qubit, arises naturally in circuit quantum electrodynamic circuits and devices. The existence of hidden symmetry in the AQRM leads to a rich energy landscape of conical intersections (CIs) and thus to interesting topological properties. However, current approximations to the AQRM fail to reproduce these CIs correctly. To overcome these limitations we propose a generalized adiabatic approximation (GAA) to describe the energy spectrum of the AQRM. This is achieved by combining the perturbative adiabatic approximation and the exact exceptional solutions to the AQRM. The GAA provides substantial improvement to the existing approaches and pushes the limit of the perturbative treatment into non-perturbative regimes. As a preliminary example of the application of the GAA we calculate the geometric phases around CIs associated with the AQRM.