论文标题
术语与全球混乱的本地哈密顿人:复杂性和签名的问题
Termwise versus globally stoquastic local Hamiltonians: questions of complexity and sign-curing
论文作者
论文摘要
我们阐明了对局部哈密顿人的全球和术语结合性之间的区别,并证明了几个复杂性结果。我们表明,安排的当地哈密顿汉顿问题是$ \ textbf {stoqma} $ - 即使对于全球杂质的哈密顿人来说,即使是完整的。我们研究了决定当地的哈密顿量是否具有全球性的复杂性。特别是,我们证明了$ \ textbf {conp} $ - 在固定的基础上决定全局的压制性的硬度,而在单量转换下决定全局停滞性的$σ_2^p $ - hardness。最后,我们通过展示Clifford转型如何签署一类无序的1d $ XYZ $ HAMILTONIAN的签名来扩展签名转换类别。
We elucidate the distinction between global and termwise stoquasticity for local Hamiltonians and prove several complexity results. We show that the stoquastic local Hamiltonian problem is $\textbf{StoqMA}$-complete even for globally stoquastic Hamiltonians. We study the complexity of deciding whether a local Hamiltonian is globally stoquastic or not. In particular, we prove $\textbf{coNP}$-hardness of deciding global stoquasticity in a fixed basis and $Σ_2^p$-hardness of deciding global stoquasticity under single-qubit transformations. As a last result, we expand the class of sign-curing transformations by showing how Clifford transformations can sign-cure a class of disordered 1D $XYZ$ Hamiltonians.