论文标题
Klebanov-Strassler理论
Pseudoscalar glueballs in the Klebanov-Strassler Theory
论文作者
论文摘要
在本文中,我们描述了Klebanov-Strassler模型的伪级子部门。该子部门完成了最低的粘合球状态的频谱的全息重建,这些粘合球状态是全球对称组$ su(2)\ times su(2)$下的单元。我们得出了伪级波动的线性性超级方程,并分析了它们的频谱。正如超对称性所预期的那样,方程系统与六个本征码兼容。我们的数值分析允许可靠提取四个相应的塔。它们的值与$ 0^{++} $标量状态的特征值相匹配。假设$ 0^{++} $作为参考,我们将全息光谱的最轻状态与QCD中的晶格计算进行比较,$ n_c = 3 $ = 3 $和$ n_c = \ infty $。
In this paper we describe a pseudoscalar subsector of the Klebanov-Strassler model. This subsector completes the holographic reconstruction of the spectrum of the lowest-lying glueball states, which are singlet under the global symmetry group $SU(2)\times SU(2)$. We derive the linearized supergravity equations for the pseudoscalar fluctuations and analyze their spectrum. The system of equation is shown to be compatible with six eigenmodes, as expected from supersymmetry. Our numerical analysis allows to reliably extract four of the corresponding towers. Their values match well the eigenvalues of the $0^{++}$ scalar states known from an earlier work. Assuming the masses of $0^{++}$ as a reference, we compare the lightest states of the holographic spectrum with lattice calculations in the quenched QCD at $N_c=3$ and $N_c=\infty$.