论文标题

ORB-SLAM3:一个准确的开源库,用于视觉,视觉惯性和多映射大满贯

ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial and Multi-Map SLAM

论文作者

Campos, Carlos, Elvira, Richard, Rodríguez, Juan J. Gómez, Montiel, José M. M., Tardós, Juan D.

论文摘要

本文介绍了Orb-Slam3,这是第一个能够使用针孔和鱼眼镜头模型,使用单眼,立体声和RGB-D摄像机执行视觉,视觉惯性和多映射大满贯。第一个主要新颖性是一个基于特征的紧密整合视觉惯性大满贯系统,即使在IMU初始化阶段,也完全依赖于最大A-Posteriori(MAP)估计。结果是一个系统,该系统在大小,室内和室外环境中实时稳健地运行,并且比以前的方法准确2至5倍。第二个主要新颖性是一个多个地图系统,该系统依赖于具有改进召回的新地方识别方法。多亏了它,Orb-Slam3能够生存到长时间的视觉信息的长时间:丢失时,它启动了一张新的地图,在重新访问映射区域时,它将与以前的地图无缝合并。与仅使用最近几秒钟的信息的视觉轨道测定系统相比,ORB-SLAM3是第一个能够在所有以前的信息中重复使用的系统。这允许在捆绑调整中包含可辨认的密钥帧,即使它们在时间上广泛分开或来自以前的映射会话,它们也可以提高视差观测值,从而提高准确性。我们的实验表明,在所有传感器配置中,ORB-SLAM3与文献中可用的最佳系统一样强大,并且更准确。值得注意的是,我们的立体惯性大满贯在Euroc无人机上的平均准确性为3.6 cm,在Tum-VI数据集房间的快速手持动作下,在AR/VR场景的设置代表Tum-VI数据集中的快速手持动作下达到了9毫米。为了获得社区的利益,我们将公共源代码公开。

This paper presents ORB-SLAM3, the first system able to perform visual, visual-inertial and multi-map SLAM with monocular, stereo and RGB-D cameras, using pin-hole and fisheye lens models. The first main novelty is a feature-based tightly-integrated visual-inertial SLAM system that fully relies on Maximum-a-Posteriori (MAP) estimation, even during the IMU initialization phase. The result is a system that operates robustly in real-time, in small and large, indoor and outdoor environments, and is 2 to 5 times more accurate than previous approaches. The second main novelty is a multiple map system that relies on a new place recognition method with improved recall. Thanks to it, ORB-SLAM3 is able to survive to long periods of poor visual information: when it gets lost, it starts a new map that will be seamlessly merged with previous maps when revisiting mapped areas. Compared with visual odometry systems that only use information from the last few seconds, ORB-SLAM3 is the first system able to reuse in all the algorithm stages all previous information. This allows to include in bundle adjustment co-visible keyframes, that provide high parallax observations boosting accuracy, even if they are widely separated in time or if they come from a previous mapping session. Our experiments show that, in all sensor configurations, ORB-SLAM3 is as robust as the best systems available in the literature, and significantly more accurate. Notably, our stereo-inertial SLAM achieves an average accuracy of 3.6 cm on the EuRoC drone and 9 mm under quick hand-held motions in the room of TUM-VI dataset, a setting representative of AR/VR scenarios. For the benefit of the community we make public the source code.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源