论文标题
多人姿势估计的可区分分层图组
Differentiable Hierarchical Graph Grouping for Multi-Person Pose Estimation
论文作者
论文摘要
多人姿势估计是具有挑战性的,因为它同时将人体关键点定位于身体关键点。以前的方法可以分为两个流,即自上而下和自下而上的方法。自上而下的方法在人类检测之后定位关键点,而自下而上的方法直接将关键点定位,然后将它们群群/分组为不同的人,这些人通常比自上而下的方法更有效。但是,在现有的自下而上方法中,关键点分组通常是独立于关键点检测而求解的,这使得它们不可端到端训练,并且具有优化的性能。在本文中,我们研究了人类部分分组的新观点,并将其重新制定为图表聚类任务。特别是,我们提出了一种新型可区分的分层图组(HGG)方法,以学习自下而上的多人姿势估计任务中的图形组。此外,HGG很容易嵌入到主流的自下而上方法中。它将人类关键点候选者作为图节点和簇键盘在多层图神经网络模型中。 HGG的模块可以通过键盘检测网络端到端训练,并能够以层次结构方式监督分组过程。为了改善聚类的歧视,我们添加了一组边缘歧视器和宏节点歧视器。对可可和Ochuman数据集的广泛实验表明,所提出的方法可改善自下而上的姿势估计方法的性能。
Multi-person pose estimation is challenging because it localizes body keypoints for multiple persons simultaneously. Previous methods can be divided into two streams, i.e. top-down and bottom-up methods. The top-down methods localize keypoints after human detection, while the bottom-up methods localize keypoints directly and then cluster/group them for different persons, which are generally more efficient than top-down methods. However, in existing bottom-up methods, the keypoint grouping is usually solved independently from keypoint detection, making them not end-to-end trainable and have sub-optimal performance. In this paper, we investigate a new perspective of human part grouping and reformulate it as a graph clustering task. Especially, we propose a novel differentiable Hierarchical Graph Grouping (HGG) method to learn the graph grouping in bottom-up multi-person pose estimation task. Moreover, HGG is easily embedded into main-stream bottom-up methods. It takes human keypoint candidates as graph nodes and clusters keypoints in a multi-layer graph neural network model. The modules of HGG can be trained end-to-end with the keypoint detection network and is able to supervise the grouping process in a hierarchical manner. To improve the discrimination of the clustering, we add a set of edge discriminators and macro-node discriminators. Extensive experiments on both COCO and OCHuman datasets demonstrate that the proposed method improves the performance of bottom-up pose estimation methods.