论文标题
使用Koopman模式在功率网中实时攻击标识的模型敏锐算法
Model-Agnostic Algorithm for Real-Time Attack Identification in Power Grid using Koopman Modes
论文作者
论文摘要
对传感器测量单元(PMU)等传感器测量的恶意活动可能会误导控制中心操作员采取错误的控制措施,从而破坏操作,财务损失和设备损坏。特别是,由于负载突然变化和生成引起的电力系统瞬变启动的错误数据攻击可能会欺骗依赖阈值比较以触发异常的传统基于模型的检测方法。在本文中,我们建议基于Koopman模式分解(KMD)算法,以实时检测和识别错误的数据攻击。 Koopman模式(KMS)能够捕获功率网络瞬态动力学中的非线性振荡模式,并揭示传感器测量中天然振荡和异常模式的空间嵌入。基于Koopman的时空非线性模态分析用于滤除攻击者注入的错误数据。在IEEE 68总线测试系统上,使用GridSate上生成的合成攻击方案在IEEE 68总线测试系统上说明了该算法的性能,这是一个最近开发的多元时空数据生成框架,用于模拟网络物理功率系统中对抗性方案。
Malicious activities on measurements from sensors like Phasor Measurement Units (PMUs) can mislead the control center operator into taking wrong control actions resulting in disruption of operation, financial losses, and equipment damage. In particular, false data attacks initiated during power systems transients caused due to abrupt changes in load and generation can fool the conventional model-based detection methods relying on thresholds comparison to trigger an anomaly. In this paper, we propose a Koopman mode decomposition (KMD) based algorithm to detect and identify false data attacks in real-time. The Koopman modes (KMs) are capable of capturing the nonlinear modes of oscillation in the transient dynamics of the power networks and reveal the spatial embedding of both natural and anomalous modes of oscillations in the sensor measurements. The Koopman-based spatio-temporal nonlinear modal analysis is used to filter out the false data injected by an attacker. The performance of the algorithm is illustrated on the IEEE 68-bus test system using synthetic attack scenarios generated on GridSTAGE, a recently developed multivariate spatio-temporal data generation framework for simulation of adversarial scenarios in cyber-physical power systems.