论文标题

癫痫发作预测:半删除的卷积神经网络体系结构

Epileptic Seizure Prediction: A Semi-Dilated Convolutional Neural Network Architecture

论文作者

Hussein, Ramy, Lee, Soojin, Ward, Rabab, McKeown, Martin J.

论文摘要

尽管机器学习和时间序列分类取得了许多进步,但对癫痫发作的准确预测仍然难以捉摸。在这项工作中,我们开发了一个卷积网络模块,该模块利用了脑电图(EEG)的缩放图,以区分塞氏前和正常的大脑活动。由于这些尺度图具有比光谱箱具有更多时间箱的矩形图像形状,因此所呈现的模块使用“半滴定的卷积”来创建一个比例的非平方接收场。所提出的半删除卷积支持在长度(图像宽度,即时间)上接受接收场的指数膨胀,同时在短尺寸(图像高度,即频率)上保持高分辨率。所提出的结构包括一组合作的半脱水卷积块,每个块都有一堆平行的半滴定卷积模块,具有不同的扩张速率。结果表明,我们提出的解决方案的表现优于最先进的方法,对于美国癫痫学会和墨尔本大学EEG数据集,癫痫发作预测敏感性得分分别为88.45%和89.52%。

Accurate prediction of epileptic seizures has remained elusive, despite the many advances in machine learning and time-series classification. In this work, we develop a convolutional network module that exploits Electroencephalogram (EEG) scalograms to distinguish between the pre-seizure and normal brain activities. Since these scalograms have rectangular image shapes with many more temporal bins than spectral bins, the presented module uses "semi-dilated convolutions" to create a proportional non-square receptive field. The proposed semi-dilated convolutions support exponential expansion of the receptive field over the long dimension (image width, i.e. time) while maintaining high resolution over the short dimension (image height, i.e., frequency). The proposed architecture comprises a set of co-operative semi-dilated convolutional blocks, each block has a stack of parallel semi-dilated convolutional modules with different dilation rates. Results show that our proposed solution outperforms the state-of-the-art methods, achieving seizure prediction sensitivity scores of 88.45% and 89.52% for the American Epilepsy Society and Melbourne University EEG datasets, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源