论文标题
扩展了Rakočević的财产
Extended Rakočević's property
论文作者
论文摘要
本文的目的是引入和研究Rakočević的财产$(w)$和属性$(b)$的新扩展,该$与其他Weorem type Theorems和最近的属性有关。我们特别证明了以下两个结果: 1。有限的线性运算符$ t $满足属性$(w_ {π_{00}})$,并且仅当$ t $满足属性$(w)$和$σ_{uf}(t)=σ_{uw}(uw}(t)。 2。$ t $满足属性$(gw_ {π_{00}})$,并且仅当$ t $满足属性$(w_ {π_{00}})$和$π_{0}(t)= p_ {0} = p_ {0}^a(t)^a(t)^a(t)^a(t)。
The purpose of this paper is to introduce and study new extension of Rakočević's property $(w)$ and property $(b)$ introduced by Berkani--Zariouh in \cite{berkani-zariouh1}, in connection with other Weyl type theorems and recent properties. We prove in particular, the two following results: 1. A bounded linear operator $T$ satisfies property $(w_{π_{00}})$ if and only if $T$ satisfies property $(w)$ and $σ_{uf}(T)=σ_{uw}(T).$ 2. $T$ satisfies property $(gw_{π_{00}})$ if and only if $T$ satisfies property $(w_{π_{00}})$ and $π_{0}(T)=p_{0}^a(T).$ Classes of operators are considered as illustrating examples.