论文标题
皮带束空间的Picard组在二次表面上
The Picard group of the moduli space of sheaves on a quadric surface
论文作者
论文摘要
在本文中,我们研究了在光滑的二次表面上可半固定滑轮的模量空间的Picard组。我们通过靠近抗宪法类别的足够的分裂来使表面极化。我们尤其专注于小判别束带的模束空间,在那里我们观察到了新的有趣的行为。我们的方法依赖于为可分离的滑轮构建某些决议,并将几何不变理论的技术应用于所得的系束系列。
In this paper, we study the Picard group of the moduli space of semistable sheaves on a smooth quadric surface. We polarize the surface by an ample divisor close to the anticanonical class. We focus especially on moduli spaces of sheaves of small discriminant, where we observe new and interesting behavior. Our method relies on constructing certain resolutions for semistable sheaves and applying techniques of geometric invariant theory to the resulting families of sheaves.