论文标题

一维自我磨削系统中的动力和奇异性缓慢

Slow dynamics and ergodicity in the one-dimensional self-gravitating system

论文作者

Souza, L. F., Filho, T. M. Rocha

论文摘要

我们重新审视了一维自我填充纸模型的动态。我们表明,均质和非均匀状态具有不同的千古特性。前者是非er依的,如果在周期性边界条件下采取适当的限制,则一粒子分布函数的碰撞项为零。在平衡时间顺序的时间窗口中,非均匀状态是千古的,如在具有远距离相互作用的其他系统中类似地观察到的。对于床单,与最初的暴力放松时间相比,这种放松时间比其他具有远距离相互作用的系统要大得多。

We revisit the dynamics of the one-dimensional self-gravitating sheets models. We show that homogeneous and non-homogeneous states have different ergodic properties. The former is non-ergodic and the one-particle distribution function has a zero collision term if a proper limit is taken for the periodic boundary conditions. Non-homogeneous states are ergodic in a time window of the order of the relaxation time to equilibrium, as similarly observe in other systems with a long range interaction. For the sheets model this relaxation time is much larger than other systems with long range interactions if compared to the initial violent relaxation time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源