论文标题
Virasoro代数在二维POTTS和LOOP型号中的作用,$ Q $
The action of the Virasoro algebra in the two-dimensional Potts and loop models at generic $Q$
论文作者
论文摘要
CFT描述了二维临界$ Q $ -State Potts模型(或其近乎表亲,密集的环路模型)的共形重量的光谱已有30多年了。但是,相应的$ \ hbox {vir} \ otimes \ overline {\ hbox {vir}} $表示的确切性质一直尚不清楚。在这里,我们解决了$ Q $的通用值的问题。这是通过不同技术的混合来实现的:对“ koo-saleur发电机”的仔细研究[arxiv:hep-th/9312156],结合了数值方面的四点振幅的测量,以及OPES和OPES和OPITES和OPITES和四点振幅,最近使用了“ Chirapormentormentormentormentormentorme bootstrys Bootstrap”。 边。我们发现,具有权重$ $(H_ {r,1},H_ {r,1})$的对角线场的零偏议(带有$ r \ in \ Mathbb {n}^*$)确实为零,因此这些字段带有简单的$ \ hbox {vir} {vir} \ otime \ otime \ otline \ kac}模块。同时,具有权重$(H_ {r,s},H_ {r,-s})$和$(H_ {R,-s},H_ {R,S})$的字段(带有$ r,s \ in \ Mathbb {n}^*$)不完全重新混合四个简单的代表性, $ \ hbox {vir} \ otimes \ Overline {\ hbox {vir}} $模块具有熟悉的“钻石”形状。这些钻石中的“顶部”和“底部”字段具有权重$(h_ {r,-s},h_ {r, - s})$,并形成一个二维Jordan Cell,以$ L_0 $和$ \ bar {l} _0 $。除其他外,这确立了Potts-Model CFT对$ Q $通用的对数。与$ q $的非商品(统一根)值的情况不同,这些不可分解的结构不存在有限的大小,但是我们仍然可以从晶格模型的数值研究中显示出级别级别 - 两种乔丹细胞如何在无限尺寸尺寸限制中堆积。
The spectrum of conformal weights for the CFT describing the two-dimensional critical $Q$-state Potts model (or its close cousin, the dense loop model) has been known for more than 30 years. However, the exact nature of the corresponding $\hbox{Vir}\otimes\overline{\hbox{Vir}}$ representations has remained unknown up to now. Here, we solve the problem for generic values of $Q$. This is achieved by a mixture of different techniques: a careful study of "Koo--Saleur generators" [arXiv:hep-th/9312156], combined with measurements of four-point amplitudes, on the numerical side, and OPEs and the four-point amplitudes recently determined using the "interchiral conformal bootstrap" in [arXiv:2005.07258] on the analytical side. We find that null-descendants of diagonal fields having weights $(h_{r,1},h_{r,1})$ (with $r\in \mathbb{N}^*$) are truly zero, so these fields come with simple $\hbox{Vir}\otimes\overline{\hbox{Vir}}$ ("Kac") modules. Meanwhile, fields with weights $(h_{r,s},h_{r,-s})$ and $(h_{r,-s},h_{r,s})$ (with $r,s\in\mathbb{N}^*$) come in indecomposable but not fully reducible representations mixing four simple $\hbox{Vir}\otimes\overline{\hbox{Vir}}$ modules with a familiar "diamond" shape. The "top" and "bottom" fields in these diamonds have weights $(h_{r,-s},h_{r,-s})$, and form a two-dimensional Jordan cell for $L_0$ and $\bar{L}_0$. This establishes, among other things, that the Potts-model CFT is logarithmic for $Q$ generic. Unlike the case of non-generic (root of unity) values of $Q$, these indecomposable structures are not present in finite size, but we can nevertheless show from the numerical study of the lattice model how the rank-two Jordan cells build up in the infinite-size limit.