论文标题

启用缓存的无人机通信:网络部署和资源分配

Cache-enabling UAV Communications: Network Deployment and Resource Allocation

论文作者

Zhang, Tiankui, Wang, Yi, Liu, Yuanwei, Xu, Wenjun, Nallanathan, Arumugam

论文摘要

在本文中,我们调查了热点区域中的内容分布,其交通被无人驾驶汽车(UAV)通信和边缘缓存的组合卸载。在增强无人机辅助的蜂窝网络中,网络部署和资源分配对于具有内容分发应用程序的用户的体验质量(QOE)至关重要。我们提出了无人机部署,缓存位置和用户协会的联合优化问题,以最大程度地提高用户的Qoe,这是通过平均意见分数(MOS)评估的。为了解决这个具有挑战性的问题,我们将优化问题分解为三个子问题。具体而言,我们建议基于互换的无人机部署算法,然后分别通过Greedy Algorithm和Lagrange Dual获得近乎最佳的缓存位置和用户关联。最后,我们建议使用无人机部署,缓存位置和用户协会优化的较低复杂性迭代算法,从而实现了良好的计算复杂性 - 优先折衷。仿真结果表明:i)提出的算法的MOS接近了详尽的搜索方法,并在几个迭代中收敛; II)与基准算法相比,拟议的算法在MOS,内容访问延迟和回程流量下载方面取得了更好的性能。

In this article, we investigate the content distribution in the hotspot area, whose traffic is offloaded by the combination of the unmanned aerial vehicle (UAV) communication and edge caching. In cache-enabling UAV-assisted cellular networks, the network deployment and resource allocation are vital for quality of experience (QoE) of users with content distribution applications. We formulate a joint optimization problem of UAV deployment, caching placement and user association for maximizing QoE of users, which is evaluated by mean opinion score (MOS). To solve this challenging problem, we decompose the optimization problem into three sub-problems. Specifically, we propose a swap matching based UAV deployment algorithm, then obtain the near-optimal caching placement and user association by greedy algorithm and Lagrange dual, respectively. Finally, we propose a low complexity iterative algorithm for the joint UAV deployment, caching placement and user association optimization, which achieves good computational complexity-optimality tradeoff. Simulation results reveal that: i) the MOS of the proposed algorithm approaches that of the exhaustive search method and converges within several iterations; and ii) compared with the benchmark algorithms, the proposed algorithm achieves better performance in terms of MOS, content access delay and backhaul traffic offloading.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源