论文标题
FDTD等离激元结构的逆设计
Inverse Design of Plasmonic Structures with FDTD
论文作者
论文摘要
逆设计大大扩展了纳米光子设备,并带来了优化的性能。然而,由于局部磁场浓度可能会导致梯度计算中的误差,因此在使用连续方法时,将反设计用于等离激元结构。另一方面,使用离散的伴随方法可以达到确切的梯度。从历史上看,离散版本专门与有限元模型一起使用,并且在等离激元结构的逆设计中应用有限差分时间域(FDTD)方法。由于使用FDTD在模拟等离激子结构中的普及,我们将离散的伴随方法与FDTD集成在一起,并提出一个框架,以使用基于密度的拓扑优化进行等离激元结构的逆设计。我们证明了具有不同介电常数的等离子块结构的梯度计算的精确性。血浆结构独特的另一个挑战是,由不良材料插值引起的非物理扩增会破坏优化的稳定收敛性。为了避免这种情况,我们在FDTD求解器中采用了非线性材料插值方案。此外,还合并了过滤和预测正则化,以确保设计结构的生产性。作为该框架的一个例子,提出了等离子弓孔的电场的成功重建。
Inverse design has greatly expanded nanophotonic devices and brought optimized performance. However, the use of inverse design for plasmonic structures has been challenging due to local field concentrations that can lead to errors in gradient calculation when the continuum adjoint method is used. On the other hand, with the discrete adjoint method one can achieve the exact gradient. Historically the discrete version is exclusively used with a Finite Element model, and applying the Finite-Difference Time-Domain (FDTD) method in inverse design of plasmonic structures is rarely attempted. Due to the popularity of using FDTD in simulating plasmonic structures, we integrate the discrete adjoint method with FDTD and present a framework to carry out inverse design of plasmonic structures using density-based topology optimization. We demonstrate the exactness of the gradient calculation for a plasmonic block structure with varying permittivity. Another challenge that is unique with plasmonic structures is that non-physical amplification caused by poorly chosen material interpolation can destroy a stable convergence of the optimization. To avoid this, we adopt a non-linear material interpolation scheme in the FDTD solver. In addition, filtering-and-projection regularization is incorporated to ensure manufacturability of the designed structures. As an example of this framework, successful reconstruction of electric fields of a plasmonic bowtie aperture is presented.