论文标题

使用Cayley代表来学习的成本量

Learnable Cost Volume Using the Cayley Representation

论文作者

Xiao, Taihong, Yuan, Jinwei, Sun, Deqing, Wang, Qifei, Zhang, Xin-Yu, Xu, Kehan, Yang, Ming-Hsuan

论文摘要

成本体积是用于光流估计的最新深层模型的重要组成部分,通常是通过计算两个特征向量之间的内部产品来构建的。但是,普遍使用的成本量中的标准内部产品可能会限制流程模型的表示能力,因为它忽略了不同信道维度之间的相关性并平等地称重每个维度。为了解决这个问题,我们使用椭圆形的内部产品提出了可学习的成本量(LCV),该产品通过正定的确定核矩阵概括了标准内部产品。为了确保其积极的确定性,我们对内核矩阵进行频谱分解,并通过Cayley表示重新分配。提出的LCV是一个轻量级的模块,可以轻松地插入现有型号中以替换香草成本量。实验结果表明,LCV模块不仅提高了标准基准的最先进模型的准确性,而且还提高了其防止发光变化,噪声和对抗性信号的对抗性扰动的稳健性。

Cost volume is an essential component of recent deep models for optical flow estimation and is usually constructed by calculating the inner product between two feature vectors. However, the standard inner product in the commonly-used cost volume may limit the representation capacity of flow models because it neglects the correlation among different channel dimensions and weighs each dimension equally. To address this issue, we propose a learnable cost volume (LCV) using an elliptical inner product, which generalizes the standard inner product by a positive definite kernel matrix. To guarantee its positive definiteness, we perform spectral decomposition on the kernel matrix and re-parameterize it via the Cayley representation. The proposed LCV is a lightweight module and can be easily plugged into existing models to replace the vanilla cost volume. Experimental results show that the LCV module not only improves the accuracy of state-of-the-art models on standard benchmarks, but also promotes their robustness against illumination change, noises, and adversarial perturbations of the input signals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源