论文标题

基于个性化疲劳模型和恢复模型,骑自行车者的最佳节奏

Optimal Pacing of a Cyclist in a Time Trial Based on Individualized Models of Fatigue and Recovery

论文作者

Ashtiani, Faraz, Sreedhara, Vijay Sarthy M, Vahidi, Ardalan, Hutchison, Randolph, Mocko, Gregory

论文摘要

本文将骑自行车的人在丘陵地形时间审判上的最佳起搏作为最小时间最佳控制问题。骑自行车者的最大力量是时间变化的约束,取决于疲劳和恢复,这些疲劳和恢复是通过本文早期提出的动态模型捕获的。详细介绍了用于识别提出疲劳和恢复模型的个性化参数的实验方案,并显示了六个人类受试者的结果。在分析治疗通过蓬蒂拉宁最低原理的必要条件下,我们表明骑自行车的人在时间审判中的最佳功率仅限于四种全面的,沿海的,沿海沿海,以临界速度或恒定的速度(爆炸式速度)(爆炸式速度)。为了确定何时在这些模式之间切换,我们通过动态编程求助于数值解决方案。然后,在四门课程中模拟其中的一门学科,包括2019年的Duathlon全国冠军,在南卡罗来纳州格林维尔举行。动态编程模拟结果表明,与竞争性业余骑自行车者的自定进度受试者的实验结果相比,旅行时间减少了24%。本文以对试验实验室实验的描述进行了结论,该实验的实验时间减少了3%,当时将近距离的速度实时传达给她。

This paper formulates optimal pacing of a cyclist on hilly terrain time-trials as a minimum-time optimal control problem. Maximal power of a cyclist serves as a time-varying constraint and depends on fatigue and recovery which are captured via dynamic models proposed early in the paper. Experimental protocols for identifying the individualized parameters of the proposed fatigue and recovery models are detailed and results for six human subjects are shown. In an analytical treatment via necessary conditions of Pontryagin Minimum Principle, we show that the cyclist's optimal power in a time-trial is limited to only four modes of all-out, coasting, pedaling at a critical power, or constant speed (bang-singular-bang). To determine when to switch between these modes, we resort to numerical solution via dynamic programming. One of the subjects is then simulated on four courses including the 2019 Duathlon National Championship in Greenville, SC. The dynamic programming simulation results show 24% reduction in travel time over experimental results of the self-paced subject who is a competitive amateur cyclist. The paper concludes with description of a pilot lab experiment in which the subject trial time was reduced by 3% when the near-optimal pace was communicated to her in real-time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源