论文标题
曲折:以内存为中心的快速DNN加速器设计空间探索框架
ZigZag: A Memory-Centric Rapid DNN Accelerator Design Space Exploration Framework
论文作者
论文摘要
建筑有效嵌入的深度学习系统需要在DNN算法,内存层次结构和数据流之间进行紧密的共同设计。但是,由于设计空间中的自由度很大,通过实施单个设计点找到最佳解决方案是不可行的。最近,已经出现了一些快速设计空间探索(DSE)的估计框架,但它们要么遭受长时间的时间或有限的探索空间。这项工作介绍了Zigzag,这是一种以内存为中心的快速DNN加速器DSE框架,该框架以不均匀的映射机会扩展了DSE,在共享内存级别上,操作数不再义务为每个循环索引使用相同的内存级别。 For this, ZigZag uses a memory-centric nested-for-loop format as a uniform representation to integrate algorithm, accelerator, and algorithm-to-accelerator mapping, and consists of three key components: 1) a latency-enhanced analytical Hardware Cost Estimator, 2) a Temporal Mapping Generator that supports even/uneven scheduling on any type of memory hierarchy, and 3) an探索整个内存层次结构设计空间的体系结构生成器。针对现有框架的基准测试实验以及在不同设计抽象水平上的三个案例研究表明了曲折的强度。通过引入Zigzag不平衡的计划机会,可以找到多达33%的节能解决方案。
Building efficient embedded deep learning systems requires a tight co-design between DNN algorithms, memory hierarchy, and dataflow. However, owing to the large degrees of freedom in the design space, finding an optimal solution through the implementation of individual design points becomes infeasible. Recently, several estimation frameworks for fast design space exploration (DSE) have emerged, yet they either suffer from long runtimes or a limited exploration space. This work introduces ZigZag, a memory-centric rapid DNN accelerator DSE framework which extends the DSE with uneven mapping opportunities, in which operands at shared memory levels are no longer bound to use the same memory levels for each loop index. For this, ZigZag uses a memory-centric nested-for-loop format as a uniform representation to integrate algorithm, accelerator, and algorithm-to-accelerator mapping, and consists of three key components: 1) a latency-enhanced analytical Hardware Cost Estimator, 2) a Temporal Mapping Generator that supports even/uneven scheduling on any type of memory hierarchy, and 3) an Architecture Generator that explores the whole memory hierarchy design space. Benchmarking experiments against existing frameworks, together with three case studies at different design abstraction levels show the strength of ZigZag. Up to 33% more energy-efficient solutions are found by introducing ZigZag's uneven scheduling opportunities.