论文标题

基于模型的多个子组和多个端点的同时推断

Model-based simultaneous inference for multiple subgroups and multiple endpoints

论文作者

Vogel, Charlotte, Schaarschmidt, Frank, Ritz, Christian, Koenig, Franz, Hothorn, Ludwig A.

论文摘要

在评估亚组和整体人群的差异时,存在各种方法论选择。最可取的是对几个人群中多个终点的同时研究。我们使用多个边缘模型(MMM)研究了一种较新的方法,该方法允许灵活处理多个端点,包括连续,二进制或活动时间数据。本文通过模拟探讨了MMM的性能与标准的Bonferroni方法相反。主要是根据不同情况下的家庭错误率和功率进行比较这些方法,样本量和标准偏差有所不同。另外,可以表明该方法可以处理重叠的子组定义,并且可以假定端点的不同组合。临床例子的重新分析显示了一个实际应用。

Various methodological options exist on evaluating differences in both subgroups and the overall population. Most desirable is the simultaneous study of multiple endpoints in several populations. We investigate a newer method using multiple marginal models (mmm) which allows flexible handling of multiple endpoints, including continuous, binary or time-to-event data. This paper explores the performance of mmm in contrast to the standard Bonferroni approach via simulation. Mainly these methods are compared on the basis of their familywise error rate and power under different scenarios, varying in sample size and standard deviation. Additionally, it is shown that the method can deal with overlapping subgroup definitions and different combinations of endpoints may be assumed. The reanalysis of a clinical example shows a practical application.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源