论文标题
使用创新的动力学蒙特卡洛方法研究分子自旋簇中磁化松弛的研究
Study of magnetization relaxation in molecular spin clusters using an innovative kinetic Monte Carlo method
论文作者
论文摘要
在分子磁体中,建模分子磁体中的阻塞温度一直是一个长期存在的问题。我们使用动力学蒙特卡洛(KMC)方法在100,000个短分子磁链(SMMC)的组装上研究了这个问题,六个相同的旋转中的每一个都带有最近的邻居各向异性铁磁交换相互作用。每种自旋也是各向异性的,具有单轴各向异性。这些SMMC上的网站旋转为$ 1 $,$ 3/2 $或$ 2 $。使用这些SMMC的本征态作为马尔可夫链的状态,我们以初始状态进行KMC模拟,在该状态下,所有SMMC都完全自旋极化并在一维晶格上组装,以体验铁电磁自旋 - 二极极互动。从这些模拟中,我们获得了放松时间$τ_r$作为温度和相关阻滞温度的函数。我们研究了这一点,用于不同的交换各向异性,现场各向异性和偶性相互作用的强度。磁化松弛时间显示了弱现场相互作用的非阿里尼乌斯行为。磁化松弛的能量屏障随着现场各向异性的增加,各向异性和自旋偶性相互作用的强度而增加。更强烈地在最后一个参数上。在所有情况下,屏障在大型现场各向异性下饱和。屏障也随着位点自旋而增加。在稀土单离子磁体中观察到的大屏障可以归因于由于分子的小尺寸和分子中稀土离子的较大旋转,因此由于短分子间距离而造成较大的偶极相互作用。
Modeling blocking temperature in molecular magnets has been a long standing problem in the field of molecular magnetism. We investigate this problem using a kinetic Monte Carlo (kMC) approach on an assembly of 100,000 short molecular magnetic chains (SMMCs), each of six identical spins with nearest neighbour anisotropic ferromagnetic exchange interactions. Each spin is also anisotropic with an uniaxial anisotropy. The site spin on these SMMCs take values $1$, $3/2$ or $2$. Using eigenstates of these SMMCs as the states of Markov chain, we carry out a kMC simulation starting with an initial state in which all SMMCs are completely spin polarized and assembled on a one-dimensional lattice so as to experience ferromagnetic spin-dipolar interaction with each other. From these simulations we obtain the relaxation time $τ_r$ as a function of temperature and the associated blocking temperature. We study this for different exchange anisotropy, on-site anisotropy and strength of dipolar interactions. The magnetization relaxation times show non-Arrhenius behaviour for weak on-site interactions. The energy barrier to magnetization relaxation increases with increase in on-site anisotropy, exchange anisotropy and strength of spin dipolar interactions; more strongly on the last parameter. In all cases the barrier saturates at large on-site anisotropy. The barrier also increases with site spin. The large barrier observed in rare-earth single ion magnets can be attributed to large dipolar interactions due to short intermolecular distances, owing to their small size and large spin of the rare earth ion in the molecule.