论文标题

在带限制功能中使用衍生物采样的敏锐结果

Sharp results on sampling with derivatives in bandlimited functions

论文作者

Selvan, A Antony

论文摘要

我们讨论了独特性,采样和重建的问题,该问题在带有限制功能的空间中使用衍生物。我们证明,如果x是实数的序列,那么两个连续样品之间的最大差距小于某些正常常数c,则可以从涉及衍生物的非均匀样品中重建带宽σ的带宽函数。我们还证明,如果最大差距小于或等于C,则x是一组唯一性,当涉及K-1衍生物的样品时,带宽σ的带宽函数函数的唯一性。作为副产品,我们获得了涉及第一衍生物的样品的尖锐最大间隙条件。

We discuss the problems of uniqueness, sampling and reconstruction with derivatives in the space of bandlimited functions. We prove that if X is sequence of real numbers such that the maximum gap between two consecutive samples is less than certain positive constant c, then bandlimited function of bandwidth σ can be reconstructed uniquely and stably from its nonuniform samples involving derivatives. We also prove that if the maximum gap is less than or equal to c, then X is a set of uniqueness for the space of bandlimited functions of bandwidth σ when the samples involving k-1 derivatives. As a by-product we obtain the sharp maximum gap condition for samples involving first derivatives.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源