论文标题
用Lefschetz缺陷3和Picard编号5的Fano 4倍分类
Classification of Fano 4-folds with Lefschetz defect 3 and Picard number 5
论文作者
论文摘要
令X为平滑,复杂的Fano 4倍,而Rho(X)的PICARD号码。如果x包含一个带有rho(x)-rho(d)> 2的素数D,则x是del pezzo表面的产物,或者rho(x)= 5或6。在这种情况下,我们完全对rho(x)= 5的情况进行了分类;有6个家庭,其中一个是新的。我们还用rho(x)> 4推断出Fano 4倍的分类,并用基本的分区收缩将分隔线发送到曲线。
Let X be a smooth, complex Fano 4-fold, and rho(X) its Picard number. If X contains a prime divisor D with rho(X)-rho(D)>2, then either X is a product of del Pezzo surfaces, or rho(X)=5 or 6. In this setting, we completely classify the case where rho(X)=5; there are 6 families, among which one is new. We also deduce the classification of Fano 4-folds with rho(X)>4 with an elementary divisorial contraction sending a divisor to a curve.