论文标题

STEM延伸的第三个同源性和Whitehead的二次函数

The third homology of stem-extensions and Whitehead's quadratic functor

论文作者

Mirzaii, Behrooz, Mokari, Fatemeh Yeganeh, Ordinola, David M. Carbajal

论文摘要

令$ a \ rightarrowtail g \ twebeadRightArrow q $为词干延伸,让$ρ:a \ times g \ to g $为乘法映射。我们表明有一个自然的地图$φ:h_1(σ_2^ε,{\ rm tor} _1^{\ Mathbb {z}}}}}}({} _ {2^\ infty} a,{} a,{} _ {2^\ infty} a)\ to h_3(g,\ mathbb {z})/ρ_\ ast(a \ otimes _ {\ mathbb {z}} h_2(g,g,\ mathbb {z}))$,这样,$φ$的图像与自然图$ h_3(a s \ a_3(a,a s \ nath)的形象相结合h_3(g,\ mathbb {z})/ρ_\ ast(a \ otimes _ {\ mathbb {z}} h_2(g,g,\ mathbb {z}))$。这里使用的重要工具是Whitehead的二次函数$γ$。作为主要结果证明的一部分,我们对自然地图$γ(a)\ \ otimes _ {\ mathbb {z}} a $,$γ(a)\ mapsto a \ otime a $的核心进行了精确的同源描述。

Let $A \rightarrowtail G\twoheadrightarrow Q$ be a stem-extension and let $ρ: A\times G\to G$ be the multiplication map. We show that there is a natural map $φ: H_1(Σ_2^ε, {\rm Tor}_1^{\mathbb{Z}}({}_{2^\infty}A,{}_{2^\infty}A))\to H_3(G,\mathbb{Z})/ρ_\ast(A \otimes_{\mathbb{Z}} H_2(G,\mathbb{Z}))$ such that, the image of $φ$ coincides with the image of the natural map $H_3(A,\mathbb{Z})\to H_3(G,\mathbb{Z})/ρ_\ast(A \otimes_{\mathbb{Z}} H_2(G,\mathbb{Z}))$. An important tool used here is Whitehead's quadratic functor $Γ$. As part of our proof of the main result, we give a precise homological description of the kernel of the natural map $Γ(A) \to A\otimes_{\mathbb{z}} A$, $γ(a)\mapsto a\otimes a$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源