论文标题

使用量子蒙特卡洛

Binding and excitations in Si$_x$H$_y$ molecular systems using quantum Monte Carlo

论文作者

Wang, Guangming, Annaberdiyev, Abdulgani, Mitas, Lubos

论文摘要

我们介绍了地面和激发状态的小型Si $ _x $ _y $ _y $分子系统的高准确性相关计算。我们采用量子蒙特卡洛(QMC)以及基于基集扩展的多种多体波函数方法。使用最近得出的相关性有效核心电位在仅价值的框架中进行计算。我们的主要目标是了解具有单参考试验波函数的地面和激发态的固定节点扩散QMC误差。与基本上确切的结果相比,使用方法组合,我们证明了QMC雾化能的非常高的精度在$ \ $ \ $ 0.07 eV之内或更高。通过对试验波函数采用正确的选择,我们发现,总能量的固定节点QMC偏差非常均匀,范围在$ 1-3.5 $%之间,绝对值在整个系统中最多$ \ $ \ $ 0.2 ev,几种类型的激发以及诸如单线和三环和较低和ly-ly-ly-ly-ly-ly-ly-ly-ly-ly-ly-ly-ly-ly-ly-ly-ly-ly-ly-ly-lim-lim-lip-lim-lim-lim-lim-lim-lim-lim-lim-lim-lim-ly-lim-lip-lim-lip-lim-light和state。我们的结果进一步证实了SI系统,并且大概还与周期表(GE,SN等)的IV和V元素相关,它显示了仅价电子结构QMC计算中发现的一些最低的固定节点偏见。

We present high-accuracy correlated calculations of small Si$_x$H$_y$ molecular systems both in the ground and excited states. We employ quantum Monte Carlo (QMC) together with a variety of many-body wave function approaches based on basis set expansions. The calculations are carried out in a valence-only framework using recently derived correlation consistent effective core potentials. Our primary goal is to understand the fixed-node diffusion QMC errors in both the ground and excited states with single-reference trial wave functions. Using a combination of methods, we demonstrate the very high accuracy of the QMC atomization energies being within $\approx$ 0.07 eV or better when compared with essentially exact results. By employing proper choices for trial wave functions, we have found that the fixed-node QMC biases for total energies are remarkably uniform ranging between $1-3.5$ % with absolute values at most $\approx$ 0.2 eV across the systems and several types of excitations such as singlets and triplets as well as low-lying and Rydberg-like states. Our results further corroborate that Si systems, and presumably also related main group IV and V elements of the periodic table (Ge, Sn, etc), exhibit some of the lowest fixed-node biases found in valence-only electronic structure QMC calculations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源