论文标题
在离散时间非线性不确定系统上的稳定性定理
Stabilizability Theorems on Discrete-time Nonlinear Uncertain Systems
论文作者
论文摘要
本文为具有多个未知参数的基本离散时间非线性系统提供了两个稳定性定理。首先,我们声称,如果离散时间多参数系统的非线性增长率由多项式规则主导,则可以稳定。后来,我们发现在离散时间内可稳定的多参数系统可以迅速成倍增长。同时,本文还讨论了最优性和闭环标识。
This paper derives two stabilizability theorems for a basic class of discrete-time nonlinear systems with multiple unknown parameters. First, we claim that a discrete-time multi-parameter system is stabilizable if its nonlinear growth rate is dominated by a polynomial rule. Later, we find that a stabilizable multi-parameter system in discrete time is possible to grow exponentially fast. Meanwhile, optimality and closed-loop identification are also discussed in this paper.