论文标题
平衡状态的独特性和稳定性,用于随机非均匀扩展地图
Uniqueness and Stability of Equilibrium States for Random Non-uniformly Expanding Maps
论文作者
论文摘要
我们考虑一类强大的随机非均匀扩展的局部同构和霍德的持续潜力,具有较小的变化。对于此类的每个元素,我们发展了热力学形式主义,并证明了在不均匀扩展的度量中平衡状态的存在和唯一性。此外,我们表明,在这种情况下,这些平衡状态和随机拓扑压力不断变化。
We consider a robust class of random non-uniformly expanding local homeomorphisms and Hölder continuous potentials with small variation. For each element of this class we develop the Thermodynamical Formalism and prove the existence and uniqueness of equilibrium states among non-uniformly expanding measures. Moreover, we show that these equilibrium states and the random topological pressure vary continuously in this setting.