论文标题
组合Banach空间的类似Banach-Stone的结果
Banach-Stone-like results for combinatorial Banach spaces
论文作者
论文摘要
我们表明,在两个紧凑型遗传家庭$ \ f $和$ \ g $上的某个拓扑假设下,某些无限的红衣主教$κ$,当相应的组合空间$ x_ \ f $和$ x_ \ g $是等值时,并且只有在$κ$诱导$κ$之间的$ \ f $ \ f $ \ f $ f $ f $ f $ f $时才是等值的。我们还证明,在$ω$上的两个不同的常规家庭$ \ f $和$ \ g $不能将一个定为另一个。这两种结果都增强了\ cite {brechferenczitcaciuc}的主要结果。
We show that under a certain topological assumption on two compact hereditary families $\F$ and $\G$ on some infinite cardinal $κ$, the corresponding combinatorial spaces $X_\F$ and $X_\G$ are isometric if and only if there is a permutation of $κ$ inducing a homeomorphism between $\F$ and $\G$. We also prove that two different regular families $\F$ and $\G$ on $ω$ cannot be permuted one to the other. Both these results strengthen the main result of \cite{BrechFerencziTcaciuc}.