论文标题
多尺度轮廓检测的图像类比方法
An Image Analogies Approach for Multi-Scale Contour Detection
论文作者
论文摘要
在本文中,我们根据最近的图像类比原理处理轮廓检测,该原理已成功用于超分辨率,纹理和曲线合成和交互式编辑。手绘大纲最初是作为基准的。给定这样的参考图像,我们提出了一种基于此专业知识的新方法,以与参考(即类比)相同的方式定位查询图像的轮廓。 使用手绘图像作为倾斜图像应用图像类比进行轮廓检测,不能为任何查询图像带来良好的结果。如果我们增加学习图像的数量,则可以改善轮廓检测,从而在查询图像和某些参考图像之间存在相似之处。除了轮廓绘制任务的硬度外,这将大大增加时间计算。 我们在这项工作中进行了调查,我们如何避免此约束,以确保所有查询图像都可以找到所有轮廓像素。从数学研究中得出的十四个衍生的立体声斑块是用于在不同尺度上与光条件独立定位轮廓的知识。 全面的实验是在不同的数据集(BSD 500,Weizmann的马匹)上进行的。获得的结果表明,通过对所报道的最新状态进行多种分辨率,通过精确和回忆与手绘轮廓进行了卓越的性能。
In this paper we deal with contour detection based on the recent image analogy principle which has been successfully used for super-resolution, texture and curves synthesis and interactive editing. Hand-drawn outlines are initially as benchmarks. Given such a reference image, we present a new method based on this expertise to locate contours of a query image in the same way that it is done for the reference (i.e by analogy). Applying a image analogies for contour detection using hand drawn images as leaning images cannot gives good result for any query image. The contour detection may be improved if we increase the number of learning images such that there will be exist similarity between query image and some reference images. In addition of the hardness of contours drawing task, this will increase considerably the time computation. We investigated in this work, how can we avoid this constraint in order to guaranty that all contour pixels will be located for any query image. Fourteen derived stereo patches, derived from a mathematical study, are the knowledge used in order to locate contours at different scales independently of the light conditions. Comprehensive experiments are conducted on different data sets (BSD 500, Horses of Weizmann). The obtained results show superior performance via precision and recall vs. hand-drawn contours at multiple resolutions to the reported state of the art.