论文标题
virasoro块和准排相形式
Virasoro blocks and quasimodular forms
论文作者
论文摘要
我们分析了重中间交易所$(H_P \ rightarrow \ infty)$的Virasoro共形块。对于圆环的1分块和球体上的4点块,我们表明,大$ H_P $扩展中的每个顺序可以以封闭形式写成Eisenstein系列中的多项式。使用融合内核来解释该结构的外观,并通过2D/4D对应关系调用模块化异常方程。我们观察到,这些约束的存在使我们能够开发更快的算法,以递归地构建该制度中的块。然后,我们将结果应用于平均重度OPE系数的校正。
We analyse Virasoro conformal blocks in the regime of heavy intermediate exchange $(h_p \rightarrow \infty)$. For the 1-point block on the torus and the 4-point block on the sphere, we show that each order in the large-$h_p$ expansion can be written in closed form as polynomials in the Eisenstein series. The appearance of this structure is explained using the fusion kernel and, more markedly, by invoking the modular anomaly equations via the 2d/4d correspondence. We observe that the existence of these constraints allows us to develop a faster algorithm to recursively construct the blocks in this regime. We then apply our results to find corrections to averaged heavy-heavy-light OPE coefficients.