论文标题
关于非途径非线性schrödinger方程和孤立波的动力学的整合性方面
On the integrability aspects of nonparaxial nonlinear Schrödinger equation and the dynamics of solitary waves
论文作者
论文摘要
通过采用ParachelevéInficultity结构分析,研究了非途径非线性schrödinger(NNLS)方程的可集成性质,描述了平面光学波导中超大型非副梁的传播。我们的研究表明,NNLS方程无法满足Painlevé测试。然而,我们通过使用Hirota的直接方法为NNLS方程构建了一个明亮的孤立波解。另外,我们从数值上证明了即使在以白噪声形式存在外部扰动的情况下,获得的明亮孤立波的稳定传播也是如此。然后,我们通过数值研究两个和三个明亮的孤立波的相干相互作用动力学。我们的研究揭示了由于非律性而引起的碰撞孤立波之间有趣的能量转换。
The integrability nature of a nonparaxial nonlinear Schrödinger (NNLS) equation, describing the propagation of ultra-broad nonparaxial beams in a planar optical waveguide, is studied by employing the Painlevé singularity structure analysis. Our study shows that the NNLS equation fails to satisfy the Painlevé test. Nevertheless, we construct one bright solitary wave solution for the NNLS equation by using the Hirota's direct method. Also, we numerically demonstrate the stable propagation of the obtained bright solitary waves even in the presence of an external perturbation in a form of white noise. We then numerically investigate the coherent interaction dynamics of two and three bright solitary waves. Our study reveals interesting energy switching among the colliding solitary waves due to the nonparaxiality.